We claim that \(f'(x)\) exists for all \(x\ne 0\) and thus that the domain of \(f'\) is
\begin{equation*}
\{x\in \R\mid x\ne 0\}=(-\infty, 0)\cup (0,\infty)\text{.}
\end{equation*}
(Note that we do not consider differentiability at \(x=0\) since \(f\) is not defined there.) Indeed, for any \(x\ne 0\text{,}\) we will show that \(f'(x)=-1/x^2\text{:}\)
\begin{align*}
f'(x) \amp = \lim\limits_{h\to 0}\frac{f(x+h)-f(x)}{h}\\
\amp = \lim\limits_{h\to 0}\frac{\frac{1}{x+h}-\frac{1}{x}}{h}\\
\amp = \lim\limits_{h\to 0}\frac{\frac{x-(x+h)}{x(x+h)}}{h}\\
\amp = \lim\limits_{h\to 0}\frac{-h}{h\, x(x+h)}\\
\amp = \lim\limits_{h\to 0}-\frac{1}{x(x+h)}\\
\amp = -\frac{1}{x\cdot x} \amp \text{(alg. eval.)}\\
\amp = -\frac{1}{x^2}\text{.}
\end{align*}