For our horizontal asymptote investigation we compute the limits at infinity of \(f\text{.}\) At \(\infty\) we have
\begin{align*}
\lim\limits_{x\to \infty}f(x) \amp= \lim\limits_{x\to \infty}\frac{x^5-2x^4}{-x^2+3x-2} \\
\amp =\lim\limits_{x\to \infty}-x^{3} \amp (\knowl{./knowl/xref/th_rational_function.html}{\text{Theorem 1.17.12}}) \\
\amp = -\infty \amp (\infty\cdot c)
\end{align*}
since \(\lim\limits_{x\to \infty}x^3=\infty\text{,}\) and \(-x^3\) is negative eventually as \(x\to \infty\text{.}\)
At \(-\infty\) we have
\begin{align*}
\lim\limits_{x\to -\infty}f(x) \amp= \lim\limits_{x\to -\infty}\frac{x^5-2x^4}{-x^2+3x-2} \\
\amp =\lim\limits_{x\to -\infty}-x^{3} \amp (\knowl{./knowl/xref/th_rational_function.html}{\text{Theorem 1.17.12}}) \\
\amp = \infty \amp (\text{type } \infty\cdot c)
\end{align*}
since \(\lim\limits_{x\to -\infty}x^3=-\infty\text{,}\) and \(-x^3\) is positive eventually as \(x\to -\infty\text{.}\)
Since \(f\) is algebraic, the possible vertical asymptotes are of the form \(x=a\text{,}\) where \(a\) is not in the domain of \(f\text{.}\) We have
\begin{equation*}
f(x)=\frac{x^5-2x^4}{-x^2+3x-2}=\frac{x^4(x-2)}{-(x-2)(x-1)}\text{.}
\end{equation*}
From this we see that the only candidates for vertical asymptotes are the lines \(x=2\) and \(x=1\text{.}\) We investigate the limits at these points:
\begin{align*}
\lim\limits_{x\to 2 }f(x)\amp=\lim\limits_{x\to 2}\frac{x^4(x-2)}{-(x-2)(x-1)} \\
\amp = \lim\limits_{x\to 2 }\frac{x^4}{-(x-1)} \amp \text{(repl.)}\\
\amp = -16 \amp \text{(poly. eval.)}\text{.}
\end{align*}
Since the limit exists at \(2\text{,}\) the line \(x=2\) is not a vertical asymptote.
We now compute the one-sided limits at \(x=1\text{.}\) We have
\begin{align*}
\lim\limits_{x\to 1^-}f(x) \amp = \lim\limits_{x\to 1^-}\frac{-x^4}{x-1} \amp \text{(repl.)}\\
\amp = \infty \amp (\text{type } c/0)\text{,}
\end{align*}
since \(\lim\limits_{x\to 1^-}x-1=0\text{,}\) \(\lim\limits_{x\to 1^-}-x^4=-1\text{,}\) and \(-x^4/(x-1)\) is positive for all \(x\) close to and less than \(1\text{.}\) Since once of the one-sided limits is infinite, we conclude that \(x=1\) is a vertical asymptote of the graph of \(f\text{.}\)
We are asked to compute the other one-sided limit. The computation is similar:
\begin{align*}
\lim\limits_{x\to 1^+}f(x) \amp = \lim\limits_{x\to 1^+}\frac{-x^4}{x-1} \amp \text{(repl.)}\\
\amp = -\infty \amp (\text{type } c/0)\text{,}
\end{align*}
since \(\lim\limits_{x\to 1^-}x-1=0\text{,}\) \(\lim\limits_{x\to 1^-}-x^4=-1\text{,}\) and \(-x^4/(x-1)\) is negative for all \(x\) close to and greater than \(1\text{.}\)