Skip to main content Contents Index
Prev Up Next \(\newcommand{\Z}{{\mathbb Z}}
\newcommand{\Q}{{\mathbb Q}}
\newcommand{\R}{{\mathbb R}}
\newcommand{\C}{{\mathbb C}}
\newcommand{\T}{{\mathbb T}}
\newcommand{\F}{{\mathbb F}}
\newcommand{\PP}{{\mathbb P}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\compose}{\circ}
\newcommand{\bolda}{{\mathbf a}}
\newcommand{\boldb}{{\mathbf b}}
\newcommand{\boldc}{{\mathbf c}}
\newcommand{\boldd}{{\mathbf d}}
\newcommand{\bolde}{{\mathbf e}}
\newcommand{\boldi}{{\mathbf i}}
\newcommand{\boldj}{{\mathbf j}}
\newcommand{\boldk}{{\mathbf k}}
\newcommand{\boldn}{{\mathbf n}}
\newcommand{\boldp}{{\mathbf p}}
\newcommand{\boldq}{{\mathbf q}}
\newcommand{\boldr}{{\mathbf r}}
\newcommand{\bolds}{{\mathbf s}}
\newcommand{\boldt}{{\mathbf t}}
\newcommand{\boldu}{{\mathbf u}}
\newcommand{\boldv}{{\mathbf v}}
\newcommand{\boldw}{{\mathbf w}}
\newcommand{\boldx}{{\mathbf x}}
\newcommand{\boldy}{{\mathbf y}}
\newcommand{\boldz}{{\mathbf z}}
\newcommand{\boldzero}{{\mathbf 0}}
\newcommand{\boldmod}{\boldsymbol{ \bmod }}
\newcommand{\boldT}{{\mathbf T}}
\newcommand{\boldN}{{\mathbf N}}
\newcommand{\boldB}{{\mathbf B}}
\newcommand{\boldF}{{\mathbf F}}
\newcommand{\boldS}{{\mathbf S}}
\newcommand{\boldE}{{\mathbf E}}
\newcommand{\boldG}{{\mathbf G}}
\newcommand{\boldK}{{\mathbf K}}
\newcommand{\boldL}{{\mathbf L}}
\DeclareMathOperator{\lns}{lns}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\Span}{span}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\NS}{null}
\DeclareMathOperator{\RS}{row}
\DeclareMathOperator{\CS}{col}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\Fix}{Fix}
\DeclareMathOperator{\Aff}{Aff}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Tor}{Tor}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\mdeg}{mdeg}
\DeclareMathOperator{\Lt}{Lt}
\DeclareMathOperator{\Lc}{Lc}
\DeclareMathOperator{\disc}{disc}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\diver}{div}
\DeclareMathOperator{\flux}{flux}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\ab}{ab}
\newcommand{\surjects}{\twoheadrightarrow}
\newcommand{\injects}{\hookrightarrow}
\newcommand{\bijects}{\leftrightarrow}
\newcommand{\isomto}{\overset{\sim}{\rightarrow}}
\newcommand{\floor}[1]{\lfloor#1\rfloor}
\newcommand{\ceiling}[1]{\left\lceil#1\right\rceil}
\newcommand{\mclass}[2][m]{[#2]_{#1}}
\newcommand{\val}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\abs}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\valuation}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\anpoly}{a_nx^n+a_{n-1}x^{n-1}\cdots +a_1x+a_0}
\newcommand{\anmonic}{x^n+a_{n-1}x^{n-1}\cdots +a_1x+a_0}
\newcommand{\bmpoly}{b_mx^m+b_{m-1}x^{m-1}\cdots +b_1x+b_0}
\newcommand{\pder}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\normalin}{\trianglelefteq}
\newcommand{\angvec}[1]{\langle #1\rangle}
\newcommand{\varpoly}[2]{#1_{#2}x^{#2}+#1_{#2-1}x^{#2-1}\cdots +#1_1x+#1_0}
\newcommand{\varpower}[1][a]{#1_0+#1_1x+#1_1x^2+\cdots}
\newcommand{\limasto}[2][x]{\lim_{#1\rightarrow #2}}
\newenvironment{linsys}[2][m]{
\begin{array}[#1]{@{}*{#2}{rc}r@{}}
}{
\end{array}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.8 Fundamental group of \(S^n\)
Theorem 2.8.1 . Weak Seifert-van Kampen.
Let \(X=U\cup V\) be an open covering, and suppose \(U\cap V\) is path connected. Given any \(x_0\in U\cap V\text{,}\) let
\begin{align*}
i_*\colon \pi_1(U,x_0)\amp \rightarrow \pi_1(X, x_0) \amp j_*\colon \pi_1(V,x_0)\amp \rightarrow \pi_1(X, x_0)
\end{align*}
be the group homomorphisms corresponding to the inclusion maps \(i\colon U\hookrightarrow X\text{,}\) \(j\colon V\hookrightarrow X\text{.}\) The group \(\pi_1(X,x_0)\) is generated by the images \(i_*(\pi_1(U,x_0))\) and \(j_*(\pi_1(V,x_0))\text{.}\) In other words, for all \([f]\in \pi_1(X,x_0)\text{,}\) we have
\begin{equation*}
[f]=[g_1]*[g_2]*\cdots *[g_n]
\end{equation*}
where for all \(1\leq k\leq n\) we have \([g_k]\in i_*(\pi_1(U,x_0))\) or \([g_k]\in j_*(\pi_1(V,x_0))\text{.}\)
Corollary 2.8.2 . Fundamental group of \(S^n\) .
For any \(n\geq 1\) the \(n\) -sphere \(S^n\) is defined as
\begin{equation*}
S^n=\{\boldx\in \R^{n+1}\colon \norm{\boldx}=1\}\subseteq \R^{n+1}.
\end{equation*}
When \(n=1\text{,}\) we have \(\pi_1(S^1, \boldx_0)=\Z\) for any \(\boldx_0\in S^1\text{.}\)
For all \(n\geq 2\) we have \(\pi_1(S^n, \boldx_0)=\{e\}\) for any \(\boldx_0\in S^n\text{.}\)
Since \(S^n\) is path connected for all \(n\geq 1\text{,}\) we conclude that \(S^n\) is simply connected for all \(n\geq 2\text{.}\)
Proof. The alternate description of $S^n$ was shown in a homework exercise.
Definition 2.8.3 . Projective space.
Fix \(n\geq 1\text{.}\) (Real) projective \(n\) -space \(\PP^n\) is the quotient space of \(\R^{n+1}-\{\boldzero\}\) by the equivalence relation \(\boldx\sim \boldy \iff \boldx=c\boldy\) for some \(c\in \R\text{.}\)
As an alternative description, we have \(\PP^n\cong S^{n}/\sim\text{,}\) where \(\sim\) is the antipodal relation: i.e., for all \(\boldx, \boldy\in S^n\) we define \(\boldx\sim \boldy\) if and only if \(\boldx=\pm \boldy\text{.}\)
Corollary 2.8.4 . Fundamental group of \(\PP^n\) .
Fix \(n\geq 2\text{.}\)
The quotient map \(q\colon S^n\rightarrow \PP^n\) is a double covering of \(\PP^n\text{.}\)
For all \(\boldx_0\in \PP^n\text{,}\) we have \(\pi_1(\PP^n, \boldx_0)=\Z/2\Z\text{.}\)