Skip to main content

Math 220-2: Kursobjekt

Section 1.20 Trigonometric substitution

Trigonometric substitution is an example of a more general integral technique that we call inverse substitution. In turn, inverse substitution is really just an application of the substitution where our substitution function is invertible.

Example 1.20.8. Sine substitution.

Find an antiderivative of \(f(x)=\sqrt{1-x^2}\text{.}\)
Solution.
Using Procedure 1.20.2 we try the inverse substitution \(x=\sin \theta, dx=\cos \theta\, d\theta\) with restriction \(-\pi/2\leq \theta\leq \pi/2\text{.}\) We compute
\begin{align*} \int \sqrt{1-x^2}\, dx \amp = \int \sqrt{1-\sin^2\theta}\, \cos\theta\, d\theta\\ \amp = \int \sqrt{\cos^2\theta} \, \cos\theta\, d\ theta\\ \amp = \int \abs{\cos \theta}\cos \theta\, d\theta\\ \amp = \int \cos^2\theta\, d\theta \amp (\theta\in [-\pi/2,\pi/2]\implies \cos \theta\geq 0)\\ \amp = \frac{1}{2}\theta+\frac{1}{4}\sin(2\theta) +C\\ \amp = \frac{1}{2}\theta+\frac{1}{2}\sin\theta\cos\theta +C\\ \amp = \frac{1}{2}\arcsin(x)+\frac{1}{2}\sin(\arcsin(x))\cos(\arcsin x)+C\\ \amp = \frac{1}{2}\arcsin x+ \frac{1}{2}x\sqrt{1-x^2}+C\text{.} \end{align*}
Here we have used once again that \(\cos(\arcsin x)=\sqrt{1-x^2}\text{.}\) Recall that this can be derived using the following reference triangle.
described in detail following the image
Reference triangle for \(x=\sin\theta\)

Example 1.20.9. Area of circle.

Derive the area formula for a circle of radius \(r\text{.}\)
Solution.
Let \(\mathcal{C}\) be a circle of radius \(r\text{.}\) Choosing the origin to be the center of \(\mathcal{C}\text{,}\) we may assume that \(\mathcal{C}\) has equation \(x^2+y^2=r^2\text{.}\) The interior of the circle is the region \(\mathcal{R}\) lying between the graphs of the two function \(y=f(x)=+\sqrt{r^2-x^2}\) and \(y=g(x)=-\sqrt{r_2-x^2}\) from \(x=-r\) to \(x=r\text{.}\) Using Definition 1.8.3 we compute
\begin{align*} \operatorname{area}\mathcal{R} \amp = \int_{-r}^r\sqrt{r^2-x^2}-(-\sqrt{r^2-x^2}) \, dx \\ \amp = 2\int_{-r}^{r}\sqrt{r^2-x^2}\, dx\\ \amp = 2\int_{-\pi/2}^{\pi/2}\sqrt{r^2-r^2\sin^2\theta }\, r\cos \theta\, d\theta \amp (x=r\sin\theta, dx=r\cos\theta dx)\\ \amp 2r^2\int_{-\pi/2}^{\pi/2}\sqrt{\cos^2\theta}\cos\theta\, d\theta\\ \amp 2r^2\int_{-\pi/2}^{\pi/2}\abs{\cos\theta}\cos\theta\, d\theta\\ \amp = 2r^2\int_{-\pi/2}^{\pi/2}\cos^2\theta\, d\theta \amp (\theta\in [-\pi/2,\pi/2]\implies \cos\theta > 0)\\ \amp = 2r^2(\frac{1}{2}\theta+\frac{1}{2}\sin 2\theta)\Bigr\vert_{-\pi/2}^{\pi/2} \amp (\cos^2\theta=\frac{1}{2}(1+\cos 2\theta))\\ \amp = 2r^2(\pi/4-(-\pi/4))\\ \amp = \pi r^2\text{.} \end{align*}

Example 1.20.10. Tangent substitution.

Compute \(\displaystyle\int \frac{1}{x^2\sqrt{x^2+4}}\, dx\text{.}\)
Solution.
Following Procedure 1.20.2, we try the inverse substitution \(x=2\tan\theta\text{,}\) \(dx=2\sec^2\theta dx\text{,}\) \(\theta\in (-\pi/2, \pi/2)\text{:}\)
\begin{align*} \int \frac{1}{x^2\sqrt{x^2+4}}\, dx \amp = \int \frac{1}{4\tan^2 \theta\sqrt{4\tan^2\theta+4}}\cdot 2\sec^2\theta\, d\theta \\ \amp = \frac{1}{4}\int \frac{1}{\tan^2\theta\sqrt{\sec^2\theta}}\cdot \sec^2\theta\, d\theta\\ \amp = \frac{1}{4}\int \frac{1}{\tan^2\theta\abs{\sec\theta}}\cdot \sec^2\theta\, d\theta\\ \amp =\frac{1}{4}\int \frac{1}{\tan^2\theta \sec\theta}\cdot \sec^2\theta\, d\theta \amp (\theta\in (-\pi/2, \pi/2)\implies \sec\theta > 0)\\ \amp =\frac{1}{4}\int \frac{\sec\theta}{\tan^2\theta}\, d\theta\\ \amp = \frac{1}{4}\int \frac{\cos \theta}{\sin^2\theta}\, d\theta\\ \amp = -\frac{1}{4\sin\theta}+C\\ \amp = -\frac{\sqrt{x^2+4}}{4x}+C\text{.} \end{align*}
Here we deduce that \(\sin\theta=\frac{x}{\sqrt{x^2+4}}\) from the reference triangle for \(x=2\tan\theta\text{.}\)
Reference triangle for tangent substitution

Example 1.20.11. Secant substitution.

Let \(a\) be a fixed positive number. Compute \(\displaystyle \int \frac{1}{\sqrt{x^2-a^2}}\, dx\text{.}\)
Solution.
Following Procedure 1.20.2 we try the inverse substitution \(x=a\sec\theta\text{,}\) \(dx=a\sec\theta\tan\theta\text{,}\) \(\theta\in [0,\pi/2)\cup (\pi/2, \pi]\text{:}\)
\begin{align*} \int \frac{1}{\sqrt{x^2-a^2}}\, dx \amp = \int \frac{1}{\sqrt{a^2\sec^2 x-a^2}}\cdot a\sec\theta\tan\theta\, dx \\ \amp =\int \frac{1}{\sqrt{\tan^2 \theta}}\sec\theta\tan\theta\, d\theta\\ \amp = \begin{cases} \int \frac{1}{\tan\theta}\sec\theta\tan\theta\, d\theta \amp \text{if } \theta\in [0,\pi/2) \\ -\int\frac{1}{\tan\theta}\sec\theta\tan\theta\, d\theta \amp \text{if }\theta\in (\pi/2,\pi] \end{cases} \amp (\knowl{./knowl/xref/ref_tri_sec.html}{\text{Secant substitution}})\\ \amp = \begin{cases} \int \sec\theta\, d\theta \amp \text{if } \theta\in [0,\pi/2) \\ -\int\sec\theta\, d\theta \amp \text{if }\theta\in (\pi/2,\pi] \end{cases}\\ \amp = \begin{cases} \ln\abs{\sec\theta+\tan\theta}+C \amp \text{if } \theta\in [0,\pi/2) \\ -\ln\abs{\sec\theta+\tan\theta}+C \amp \text{if }\theta\in (\pi/2,\pi] \end{cases}\\ \amp =\begin{cases} \ln\abs{\frac{x}{a}+\frac{\sqrt{x^2-a^2}}{a}}+C \amp \text{if } \theta\in [0,\pi/2) \\ -\ln\abs{\frac{x}{a}-\frac{\sqrt{x^2-a^2}}{a}}+C \amp \text{if }\theta\in (\pi/2,\pi] \end{cases} \amp (\knowl{./knowl/xref/ref_tri_sec.html}{\text{Secant substitution}})\\ \amp =\begin{cases} \ln\abs{\frac{x+\sqrt{x^2-a^2}}{a}}+C \amp \text{if } \theta\in [0,\pi/2) \\ -\ln\abs{\frac{x-\sqrt{x^2-a^2}}{a}}+C+C \amp \text{if }\theta\in (\pi/2,\pi] \end{cases} \\ \amp =\begin{cases} \ln\abs{x+\sqrt{x^2-a^2}}-\ln a+C \amp \text{if } \theta\in [0,\pi/2) \\ \ln\abs{\frac{1}{x-\sqrt{x^2-a^2}}}-\ln a+C \amp \text{if }\theta\in (\pi/2,\pi] \end{cases} \amp (\text{algebra}) \\ \amp = \ln\abs{x+\sqrt{x^2-a^2}}-\ln a+C \amp \left(\frac{1}{x-\sqrt{x^2-a^2}}=x+\sqrt{x^2-a^2}\right)\\ \amp = \ln\abs{x+\sqrt{x^2-a^2}}+D\text{.} \end{align*}

Example 1.20.12. Secant substitution: definite.

Compute \(\displaystyle\int_{-\sqrt{2}}^{-2/\sqrt{3}}\frac{\sqrt{x^2-1}}{x}\, dx\text{.}\)
Solution.
We use the inverse substitution \(x=\sec\theta, dx=\sec\theta\tan\theta\text{.}\) Solve \(-1/\sqrt{2}=\sec\theta\) and \(-2/\sqrt{3}=\sec\theta\) for \(\theta\in [0,\pi/2)\cup (\pi/2,\pi]\text{,}\) we see that the new limits of integration are \(\theta=3\pi/4\) and \(\theta=5\pi/6\text{.}\) Thus we have
\begin{align*} \int_{-\sqrt{2}}^{-2/\sqrt{3}}\frac{\sqrt{ \theta^2-1}}{ \theta}\, d \theta \amp = \int_{3\pi/4}^{5\pi/6}\frac{\sqrt{\sec^2 \theta-1}}{\sec \theta}\cdot \sec \theta\tan \theta\, d\theta \\ \amp =\int_{3\pi/4}^{5\pi/6}\frac{\abs{\tan \theta}}{\sec \theta}\cdot \sec \theta\tan \theta\, d\theta \\ \amp = \int_{3\pi/4}^{5\pi/6}-\tan^2 \theta\, d\theta \amp (\theta\in (\pi/2, \pi]\implies \tan\theta< 0)\\ \amp = \int_{3\pi/4}^{5\pi/6}1-\sec^2 \theta\, d\theta\\ \amp = \theta-\tan\theta\Bigr\vert_{3\pi/4}^{5\pi/6}\\ \amp = \frac{\pi}{12}+\frac{1}{\sqrt{3}}-1\text{.} \end{align*}

Example 1.20.13. Secant substitution: indefinite.

Find an antiderivative \(F\) of the function \(f(x)=\frac{\sqrt{x^2-1}}{x}\, dx\) on the domain \((-\infty,-1]\cup [1,\infty)\text{.}\) The only inverse trigonometric functions allowed to appear in your formula for \(F\) are \(\arcsin x\) and \(\arctan x\text{.}\)
Solution.
To be assigned on written homework.