Definition 1.24.1. Improper integral of type I: infinite intervals.
Below we define definite integrals over infinite intervals. These are called improper integrals of type I, or integrals over infinite intervals.
-
Interval \([a,\infty)\).Let \(f\) be continuous on the interval \([a,\infty)\text{.}\) The integral of \(f\) over \([a,\infty)\), denoted \(\int_a^\infty f(x)\, dx\text{,}\) is said to converge if the limit\begin{equation} \lim_{R\to\infty}\int_a^R f(x)\, dx\tag{1.24.1} \end{equation}exists, in which case we define\begin{equation} \int_a^\infty f(x)\, dx=\lim_{R\to\infty}\int_a^R f(x)\, dx\text{.}\tag{1.24.2} \end{equation}If the limit (1.24.1) does not exist, we say the improper integral diverges.
-
Interval \((-\infty,a]\).Let \(f\) be continuous on the interval \((-\infty,a]\text{.}\) The integral of \(f\) over \((-\infty,a]\), denoted \(\int_{-\infty}^a f(x)\, dx\text{,}\) is said to converge if the limit\begin{equation} \lim_{R\to\infty}\int_{-R}^a f(x)\, dx\tag{1.24.3} \end{equation}exists, in which case we define\begin{equation} \int_{-\infty}^a f(x)\, dx=\lim_{R\to\infty}\int_{-R}^a f(x)\, dx\text{.}\tag{1.24.4} \end{equation}If the limit (1.24.3) does not exist, we say the improper integral diverges.
-
Real line.Let \(f\) be continuous on the real line \(\R=(-\infty,\infty)\text{.}\) The integral of \(f\) over \((-\infty,\infty)\), denoted \(\int_{-\infty}^{\infty}f(x)\, dx\text{,}\) is said to converge if both of the half-infinite integrals \(\int_{-\infty}^a f(x)\, dx\) and \(\int_a^{\infty}f(x)\, dx\) converge for some real number \(a\text{.}\) In this case we define\begin{equation} \int_{-\infty}^\infty f(x)\, dx=\int_{-\infty}^a f(x)\, dx+\int_a^{\infty}f(x)\, dx\text{.}\tag{1.24.5} \end{equation}If either (or both) of the half-infinite integrals diverge, we say that the integral of \(f\) over \((-\infty, \infty)\) diverges.