Skip to main content

Math 220-2: Kursobjekt

Section 1.24 Improper integrals

Definition 1.24.1. Improper integral of type I: infinite intervals.

Below we define definite integrals over infinite intervals. These are called improper integrals of type I, or integrals over infinite intervals.
  • Interval \([a,\infty)\).
    Let \(f\) be continuous on the interval \([a,\infty)\text{.}\) The integral of \(f\) over \([a,\infty)\), denoted \(\int_a^\infty f(x)\, dx\text{,}\) is said to converge if the limit
    \begin{equation} \lim_{R\to\infty}\int_a^R f(x)\, dx\tag{1.24.1} \end{equation}
    exists, in which case we define
    \begin{equation} \int_a^\infty f(x)\, dx=\lim_{R\to\infty}\int_a^R f(x)\, dx\text{.}\tag{1.24.2} \end{equation}
    If the limit (1.24.1) does not exist, we say the improper integral diverges.
  • Interval \((-\infty,a]\).
    Let \(f\) be continuous on the interval \((-\infty,a]\text{.}\) The integral of \(f\) over \((-\infty,a]\), denoted \(\int_{-\infty}^a f(x)\, dx\text{,}\) is said to converge if the limit
    \begin{equation} \lim_{R\to\infty}\int_{-R}^a f(x)\, dx\tag{1.24.3} \end{equation}
    exists, in which case we define
    \begin{equation} \int_{-\infty}^a f(x)\, dx=\lim_{R\to\infty}\int_{-R}^a f(x)\, dx\text{.}\tag{1.24.4} \end{equation}
    If the limit (1.24.3) does not exist, we say the improper integral diverges.
  • Real line.
    Let \(f\) be continuous on the real line \(\R=(-\infty,\infty)\text{.}\) The integral of \(f\) over \((-\infty,\infty)\), denoted \(\int_{-\infty}^{\infty}f(x)\, dx\text{,}\) is said to converge if both of the half-infinite integrals \(\int_{-\infty}^a f(x)\, dx\) and \(\int_a^{\infty}f(x)\, dx\) converge for some real number \(a\text{.}\) In this case we define
    \begin{equation} \int_{-\infty}^\infty f(x)\, dx=\int_{-\infty}^a f(x)\, dx+\int_a^{\infty}f(x)\, dx\text{.}\tag{1.24.5} \end{equation}
    If either (or both) of the half-infinite integrals diverge, we say that the integral of \(f\) over \((-\infty, \infty)\) diverges.

Example 1.24.3. Type I: half-infinite.

Evaluate \(\displaystyle\int_{-2}^{\infty}e^{-x}\, dx\text{.}\)
Solution.

Example 1.24.4. Type I: \(p\)-test.

Evaluate \(\displaystyle\int_{2}^\infty \frac{1}{x^p}\, dx\) for \(p> 0\text{.}\)
Solution.

Example 1.24.6. Type I: half-infinite.

Evaluate \(\displaystyle\int_{-\infty}^{\infty}\frac{1}{x^2+1}\, dx\text{.}\)
Solution.

Definition 1.24.7. Improper integrals of type II: discontinuities.

Assume \(f\) is continuous on the interval \(I=[a,b]\text{,}\) except possibly at one point.
  • Assume \(f\) is not continuous at \(x=a\text{.}\) The integral of \(f\) over \([a,b]\), denoted \(\int_a^b f(x)\, dx\text{,}\) is said to converge if the limit
    \begin{equation} \lim_{t\to a^+}\int_t^b f(x)\, dx\text{,}\tag{1.24.7} \end{equation}
    exists, in which case we define
    \begin{equation} \int_a^b f(x)\, dx=\lim_{t\to a^+}\int_t^b f(x)\, dx\text{.}\tag{1.24.8} \end{equation}
    If the limit (1.24.7) does not exist, we say the improper integral diverges.
  • Assume \(f\) is not continuous at \(x=b\text{.}\) The integral of \(f\) over \([a,b]\), denoted \(\int_a^b f(x)\, dx\text{,}\) is said to converge if the limit
    \begin{equation} \lim_{t\to b^-}\int_a^t f(x)\, dx\text{,}\tag{1.24.9} \end{equation}
    exists, in which case we define
    \begin{equation} \int_a^b f(x)\, dx=\lim_{t\to b^-}\int_a^t f(x)\, dx\text{.}\tag{1.24.10} \end{equation}
    If the limit (1.24.7) does not exist, we say the improper integral diverges.
  • Assume \(f\) is not continuous at \(c\in (a,b)\text{.}\) The integral of \(f\) over \([a,b]\), denoted \(\int_a^bf(x)\, dx\text{,}\) is said to converge if both improper integrals \(\int_a^cf(x)\, dx\) and \(\int_c^b f(x)\, dx\) converge, in which case we define
    \begin{equation} \int_a^bf(x)\, dx=\int_a^c f(x)\, dx+ \int_c^b f(x)\, dx,\text{.}\tag{1.24.11} \end{equation}
    Otherwise, we say that the integral over the entire interval diverges.

Example 1.24.9. Improper: type II.

Evaluate \(\displaystyle\int_{0}^2\frac{1}{x-1}\, dx\text{.}\)
Solution.

Example 1.24.10. Improper: type II.

Evaluate \(\displaystyle\int_0^{1}\ln x\, dx\text{.}\)
Solution.

Example 1.24.11. Improper: type II.

Evaluate \(\displaystyle\int_1^{4}\frac{x}{\sqrt[3]{x^2-4}}\, dx\text{.}\)
Solution.

Definition 1.24.12. Area interpretation of improper integrals.

Let \(f\) be defined on an interval \(I\) for which the corresponding integral is improper, and let \(\mathcal{R}\) be the (potentially unbounded) region between the graph of \(f\) and the \(x\)-axis over the interval \(I\text{.}\)
  • We define the area (or total area) of \(\mathcal{R}\) to be the integral of \(\lvert f\rvert\) over \(I\text{,}\) assuming this integral converges.
  • We define the signed area of \(\mathcal{R}\) to be the integral of \(f\) over \(I\text{,}\) assuming this interval converges.