Definition 1.22.1. Trapezoidal rule.
Let \(f\) be an integrable function on \([a,b]\text{,}\) let \(n\) be a positive integer, and let
\begin{equation*}
a=x_0\lt x_1\lt x_2\lt \cdots \lt x_n=b
\end{equation*}
be partition of \([a,b]\) into \(n\) subintervals of equal length \(\Delta x=\frac{b-a}{n}\text{.}\)
The \(n\)-th trapezoidal estimate of \(\displaystyle\int f(x)\, dx\text{,}\) denoted \(T_n\text{,}\) is defined as
\begin{equation*}
T_n=\frac{1}{2}\Delta x(f(x_0)+2f(x_1)+2f(x_2)+\cdots +2f(x_{n-1})+f(x_n))\text{.}
\end{equation*}
The trapezoidal estimate is the result of approximating the graph of \(f\) with the polygon passing through the points \(P_0=(x_0, f(x_0)), P_1=(x_1,f(x_1)), \dots, P_n=(x_n, f(x_n))\text{.}\)