Skip to main content

Math 220-2: Kursobjekt

Section 1.15 More on indeterminate forms

There are other types of indeterminate form limit expression to which l’Hôpital’s rule cannot be directly applied. However, after some algebraic manipulation we can often get the expression into a more tractable form.

Definition 1.15.1. More indeterminate forms.

Assume \(a\) is either a finite number or \(\pm\infty\text{.}\)
If \(\displaystyle\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=\infty\text{,}\) then \(\displaystyle\lim_{x\to a}f(x)-g(x)\) is an indeterminate form of type \(\infty-\infty\).
If \(\displaystyle\lim_{x\to a}f(x)=0\) and \(\lim_{x\to a}g(x)=\pm\infty\text{,}\) then \(\displaystyle\lim_{x\to a}f(x)g(x)\) is an indeterminate form of type \(0\cdot\infty\text{.}\)
If \(\displaystyle\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0\text{,}\) then \(\displaystyle\lim_{x\to a}f(x)^{g(x)}\) is an indeterminate form of type \(0^0\).
If \(\displaystyle\lim_{x\to a}f(x)=\infty\) and \(\lim_{x\to a}g(x)=0\text{,}\) then \(\displaystyle\lim_{x\to a}f(x)^{g(x)}\) is an indeterminate form of type \(\infty^0\).
If \(\displaystyle\lim_{x\to a}f(x)=1\) and \(\lim_{x\to a}g(x)=\infty\text{,}\) then \(\displaystyle\lim_{x\to a}f(x)^{g(x)}\) is an indeterminate form of type \(1^\infty\).

Example 1.15.3. More indeterminate forms.

Compute the following limits.
  1. \(\displaystyle \displaystyle\lim_{x\to 0^+}\frac{1}{\sin x}-\frac{1}{x}\)
  2. \(\displaystyle \displaystyle\lim_{x\to \infty}2x-\sqrt{4x^2-13x}\)
  3. \(\displaystyle \displaystyle\lim_{x\to -\infty}x^22^{x}\)
  4. \(\displaystyle \displaystyle\lim_{x\to 0^+}(1+x)^{1/x}\)
  5. \(\displaystyle \displaystyle\lim_{x\to \infty}(1+x^2)^{2/x}\)
Solution.
  1. \begin{align*} \lim_{x\to 0^+}\frac{1}{\sin x}-\frac{1}{x} \amp = \lim_{x\to 0^+}\frac{x-\sin x}{x\sin x} \amp (\text{alg. tech.: common denom.})\\ \amp =0\text{.} \end{align*}
    The last equality was shown in Example 1.14.6 with the help of l’Hôpital’s rule.
  2. \begin{align*} \lim_{x\to \infty}2x-\sqrt{4x^2-13x}\amp= \lim_{x\to \infty}2x-\sqrt{4x^2-13x}\cdot \frac{2x+\sqrt{4x^2+13x}}{2x+\sqrt{4x^2-13x}} \amp (\text{alg. tech.: conjugate})\\ \amp = \lim_{x\to \infty}\frac{4x^2-(4x^2-13x)}{2x+\sqrt{4x^2-13x}} \\ \amp = \lim_{x\to \infty}\frac{13x}{2x+\sqrt{4x^2-13x}}\\ \amp = \lim_{x\to \infty}\frac{\cancel{x}}{\cancel{x}}\frac{13}{2+\sqrt{4-13/x}}\\ \amp = \frac{13}{2+\sqrt{4-0}}\\ \amp = \frac{13}{4} \end{align*}
    Note: the step where \(x\) is factored out of the numerator and denominator was motivated by the intuition that as \(x\to \infty\text{,}\) the \(x^2\) term in the radical dominates the \(x\) term.
  3. \begin{align*} \lim_{x\to -\infty}x^22^{x} \amp = \lim_{x\to -\infty}\frac{x^2}{2^{-x}}\\ \amp = \lim_{x\to -\infty}\frac{2x}{-\ln 2 \cdot 2^{-x}} \amp (\text{l'Hop }, \infty/\infty)\\ \amp = \lim_{x\to -\infty}\frac{2}{(\ln 2)^2\cdot 2^{-x}}\\ \amp = \frac{2}{\infty} \amp (2^{-x}\to \infty \text{ as } x\to -\infty)\\ \amp = 0\text{.} \end{align*}
  4. \begin{align*} \lim_{x\to 0^+}(1+x)^{1/x} \amp = \lim_{x\to 0^+}e^{\frac{1}{x}\ln (1+x)} \amp (\text{def. of } a^b)\\ \amp = e^{\lim_{x\to 0^+}\frac{\ln (1+x)}{x}} \amp \knowl{./knowl/xref/eq_exp_limit.html}{\text{(1.15.1)}} \\ \amp = e^{\lim_{x\to 0^+}\frac{1/(1+x)}{1}} \amp (\text{l'Hop }, 0/0)\\ \amp = e^{1}\\ \amp = e\text{.} \end{align*}
  5. \begin{align*} \lim_{x\to \infty}(1+x^2)^{2/x} \amp = \lim_{x\to \infty}e^{\frac{2}{x}\ln(1+x^2)} \amp (\text{def. of } a^b)\\ \amp = e^{\lim_{x\to \infty}\frac{2\ln(1+x^2)}{x}} \amp \knowl{./knowl/xref/eq_exp_limit.html}{\text{(1.15.1)}}\\ \amp = e^{\lim_{x\to \infty}\frac{4x/(1+x^2)}{1}} \amp (\text{l'Hop }, \infty/\infty) \\ \amp = e^0 \amp (4x/1+x^2\to 0 \text{ as } x\to \infty)\\ \amp = 1\text{.} \end{align*}