Skip to main content

Math 220-2: Kursobjekt

Section 1.23 Numerical integration: error bounds

Example 1.23.2. Estimating \(\ln 4\text{:}\) error bounds.

Let \(f(x)=\frac{1}{x}\text{.}\) Recall that \(\ln 4=\int_1^4 f(x)\, dx\text{.}\)
Compute bounds for the errors in (a) the \(n=10\) trapezoidal estimate of \(\ln 4\) and (b) the \(n=10\) Simpson’s rule estimate of \(\ln 4\text{.}\)
Solution.

Example 1.23.3. Estimating \(\pi\text{:}\) error bounds.

Let \(f(x)=\frac{4}{x^2+1}\text{.}\) We have
\begin{align*} f''(x)\amp =\frac{8(3x^2-1)}{(x^2+1)^3}\\ f^{(4)}(x)\amp =\frac{96(5x^4-10x^2+1)}{(x^2+1)^5}\text{.} \end{align*}
  1. Recall that \(\pi=\int_0^1 f(x)\, dx\text{.}\) Compute bounds for the errors in estimating \(\pi\) using (a) the \(n=10\) trapezoidal rule, and (b) the \(n=10\) Simpson’s rule.
  2. Find (a) an \(n\) such that the \(n\)-th trapezoidal estimate of \(\pi\) is within \(10^{-9}\) of the actual value, and (b) an \(n\) such that the \(n\)-th Simpson’s rule estimate of \(\pi\) is within \(10^{-9}\) of the actual value.
Solution.