Skip to main content Contents
Prev Up Next \(\newcommand{\Z}{{\mathbb Z}}
\newcommand{\Q}{{\mathbb Q}}
\newcommand{\R}{{\mathbb R}}
\newcommand{\C}{{\mathbb C}}
\newcommand{\T}{{\mathbb T}}
\newcommand{\F}{{\mathbb F}}
\newcommand{\PP}{{\mathbb P}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\compose}{\circ}
\newcommand{\bolda}{{\mathbf a}}
\newcommand{\boldb}{{\mathbf b}}
\newcommand{\boldc}{{\mathbf c}}
\newcommand{\boldd}{{\mathbf d}}
\newcommand{\bolde}{{\mathbf e}}
\newcommand{\boldi}{{\mathbf i}}
\newcommand{\boldj}{{\mathbf j}}
\newcommand{\boldk}{{\mathbf k}}
\newcommand{\boldn}{{\mathbf n}}
\newcommand{\boldp}{{\mathbf p}}
\newcommand{\boldq}{{\mathbf q}}
\newcommand{\boldr}{{\mathbf r}}
\newcommand{\bolds}{{\mathbf s}}
\newcommand{\boldt}{{\mathbf t}}
\newcommand{\boldu}{{\mathbf u}}
\newcommand{\boldv}{{\mathbf v}}
\newcommand{\boldw}{{\mathbf w}}
\newcommand{\boldx}{{\mathbf x}}
\newcommand{\boldy}{{\mathbf y}}
\newcommand{\boldz}{{\mathbf z}}
\newcommand{\boldzero}{{\mathbf 0}}
\newcommand{\boldmod}{\boldsymbol{ \bmod }}
\newcommand{\boldT}{{\mathbf T}}
\newcommand{\boldN}{{\mathbf N}}
\newcommand{\boldB}{{\mathbf B}}
\newcommand{\boldF}{{\mathbf F}}
\newcommand{\boldS}{{\mathbf S}}
\newcommand{\boldE}{{\mathbf E}}
\newcommand{\boldG}{{\mathbf G}}
\newcommand{\boldK}{{\mathbf K}}
\newcommand{\boldL}{{\mathbf L}}
\DeclareMathOperator{\lns}{lns}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\Span}{span}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\NS}{null}
\DeclareMathOperator{\RS}{row}
\DeclareMathOperator{\CS}{col}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\Fix}{Fix}
\DeclareMathOperator{\Aff}{Aff}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Tor}{Tor}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\mdeg}{mdeg}
\DeclareMathOperator{\Lt}{Lt}
\DeclareMathOperator{\Lc}{Lc}
\DeclareMathOperator{\disc}{disc}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\diver}{div}
\DeclareMathOperator{\flux}{flux}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\ab}{ab}
\newcommand{\surjects}{\twoheadrightarrow}
\newcommand{\injects}{\hookrightarrow}
\newcommand{\bijects}{\leftrightarrow}
\newcommand{\isomto}{\overset{\sim}{\rightarrow}}
\newcommand{\floor}[1]{\lfloor#1\rfloor}
\newcommand{\ceiling}[1]{\left\lceil#1\right\rceil}
\newcommand{\mclass}[2][m]{[#2]_{#1}}
\newcommand{\val}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\abs}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\valuation}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\anpoly}{a_nx^n+a_{n-1}x^{n-1}\cdots +a_1x+a_0}
\newcommand{\anmonic}{x^n+a_{n-1}x^{n-1}\cdots +a_1x+a_0}
\newcommand{\bmpoly}{b_mx^m+b_{m-1}x^{m-1}\cdots +b_1x+b_0}
\newcommand{\pder}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\normalin}{\trianglelefteq}
\newcommand{\angvec}[1]{\langle #1\rangle}
\newcommand{\varpoly}[2]{#1_{#2}x^{#2}+#1_{#2-1}x^{#2-1}\cdots +#1_1x+#1_0}
\newcommand{\varpower}[1][a]{#1_0+#1_1x+#1_1x^2+\cdots}
\newcommand{\limasto}[2][x]{\lim_{#1\rightarrow #2}}
\newenvironment{linsys}[2][m]{
\begin{array}[#1]{@{}*{#2}{rc}r@{}}
}{
\end{array}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 1.11 The natural logarithm
Definition 1.11.1 . Natural logarithm.
The natural logarithm function is the function \(\ln\) with domain \(D=(0,\infty)\) defined as
\begin{equation*}
\ln x=\int_1^x\frac{1}{t}\, dt\text{.}
\end{equation*}
Theorem 1.11.2 . Natural logarithm properties.
The natural logarithm is differentiable (hence also continuous) on \((0,\infty)\) and satisfies
\begin{equation*}
\frac{d}{dx}\ln x=\frac{1}{x}\text{.}
\end{equation*}
for all \(x\) in \((0,\infty)\text{.}\)
The natural logarithm is increasing on \((0,\infty)\) and hence one-to-one. The graph of \(\ln\) is always concave down.
We have
\begin{align}
\lim_{x\to\infty}\ln x\amp =\infty\tag{1.11.1}\\
\lim_{x\to 0^+}\ln x\amp =-\infty\tag{1.11.2}
\end{align}
The range of \(\ln\) is \((-\infty, \infty)\text{.}\)
\(\ln 1=0\text{.}\)
We have
\begin{align}
\ln(ab)\amp =\ln a+\ln b, \text{ for all \(a,b\in (0,\infty)\). }\tag{1.11.3}\\
\ln(a/b)\amp =\ln a-\ln b, \text{ for all \(a,b\in (0,\infty)\), \(b\ne 0\). }\tag{1.11.4}\\
\ln a^r\amp =r\ln a, \text{ for all \(a\in (0,\infty)\) and \(r\in \R\). }\tag{1.11.5}
\end{align}
Corollary 1.11.4 . Antiderivative of \(f(x)=1/x\) .
The function \(F(x)=\ln\lvert x\rvert\) is an antiderivative of the function \(f(x)=1/x\) on \(D=(-\infty, 0)\cup (0,\infty)\text{:}\) i.e., we have
\begin{equation*}
\int\frac{1}{x}\, dx=\ln \vert x\rvert\, dx+C\text{.}
\end{equation*}
Definition 1.11.5 . Euler’s number.
Euler’s number , denoted \(e\text{,}\) is the unique number in \(D=(0,\infty)\) satisfying \(\ln e=1\text{.}\) In other words, \(e\) is the number satisfying
\begin{equation*}
1=\int_1^e\frac{1}{t}\, dt\text{.}
\end{equation*}
Theorem 1.11.6 . Trigonometric antiderivatives.
\(\displaystyle \displaystyle\int \tan x\, dx=-\ln\lvert \cos x\rvert+C=\ln\lvert\sec x\rvert+C\)
\(\displaystyle \displaystyle\int \cot x\, dx=\ln\vert \sin x\vert+C\)
\(\displaystyle \displaystyle\int \sec x\, dx=\ln\vert \sec x+\tan x\vert+C\)
\(\displaystyle \displaystyle\int \csc x\, dx=-\ln\vert \csc x+\cot x\vert+C\)