Skip to main content

Math 220-2: Kursobjekt

Section 1.19 Trigonometric integrals

We now develop an integration technique for two very particular types of integrals:
\begin{align*} \int \sin^m x\cos^n x\, dx \amp \amp \int \tan^m x\sec^n x\, dx \text{.} \end{align*}
Why these particular pairings of products of functions? In a nutshell, because one of the following four choices of substitution will often come in handy:
\begin{align*} u\amp =\sin x \amp u\amp =\tan x \\ du\amp =\cos x\, dx \amp du\amp =\sec^2 x\\ \amp \\ u\amp =\cos x \amp u\amp =\sec x \\ du\amp =-\sin x\, dx \amp du\amp =\sec x\tan x\text{.} \end{align*}
Procedure 1.19.2 and Procedure 1.19.3 articulate in greater detail when and where such substitutions will be useful. The basic principle is that a given substitution as above will help, when after “peeling off” part of the integrand to account for the \(du\text{,}\) the remaining part of the integrand can be expressed completely in terms of \(u\text{.}\)

Example 1.19.4. Odd sine power.

Compute \(\displaystyle \int \sin^3x \cos^2 x\, dx\text{.}\)
Solution.
Peel off a factor of \(\sin x\) and use the substitution \(u=\cos x\text{,}\) \(du=-\sin x\text{:}\)
\begin{align*} \int \sin^3x \cos^2 x\, dx \amp = \int \sin^2x \cos^2 x \sin x\, dx \\ \amp = \int (1-\cos^2x) \cos^2 \sin x\, dx\\ \amp = -\int (1-u^2)u^2\, du \amp (u=\cos x, du=-\sin x dx)\\ \amp = -\frac{1}{3}u^3+\frac{1}{5}u^5+C\\ \amp = -\frac{1}{3}\cos ^3 x+\frac{1}{5}\cos^5 x+C \end{align*}

Example 1.19.5. Even powers.

Compute \(\displaystyle \int \sin^2 x\cos^4 x\, dx\text{.}\)
Solution.
Both powers are even. We use the square identity to reduce powers across the board:
\begin{align*} \int \sin^2 x\cos^4 x\, dx \amp = \int \frac{1}{2}(1-\cos 2x)\left(\frac{1}{2}(1+\cos 2x)\right)^2\, dx \\ \amp = \frac{1}{8}\int (1-\cos 2x)(1+\cos 2x)^2\, dx\\ \amp = \frac{1}{8}\int 1+\cos 2x-\cos^2 2x-\cos^3 2x\, dx\\ \amp = \frac{1}{8}\int 1-\cos^2 2x+\sin^2 x\cos x\, dx \amp (\cos^3 x=(1-\sin^2 x)\cos x)\\ \amp =\frac{1}{8}\int \frac{1}{2}-\frac{1}{4}\cos 4x+\underset{u^2}{\underbrace{\sin^2 2x}}\, \underset{\frac{du}{2}}{\underbrace{\cos 2x\, dx}} \amp (\cos 2x=\frac{1}{2}(1+\cos 4x))\\ \amp = \frac{1}{16}x-\frac{1}{64}\sin 4x+\frac{1}{48}\sin^3 2x+C \amp (u=\sin 2x, du=2\cos 2x dx)\text{.} \end{align*}

Example 1.19.6. Even secant power.

Compute \(\displaystyle \int \sec^4 x\, dx\text{.}\)
Solution.
Peel off a factor of \(\sec^2 x\) and use the substitution \(u=\tan x\text{,}\) \(du=\sec^2 x dx\text{:}\)
\begin{align*} \int \sec^4 x\, dx\amp = \int (\tan^2 x+1)\, \underset{u}{\underbrace{\sec^2 x\, dx}}\\ \amp = \frac{1}{3}\tan^3 x+\tan x+C \amp (u=\tan x, du=\sec^2 x\, dx)\text{.} \end{align*}

Example 1.19.7. Odd tangent power.

Compute \(\displaystyle \int \tan^5 x\sec^7 x\, dx\text{.}\)
Solution.
Peel off a factor of \(\tan x\sec x\) and use the substitution \(u=\sec x\text{,}\) \(du=\sec x\tan x\text{:}\)
\begin{align*} \int \tan^5 x\sec^7 x\, dx \amp = \int (\sec^2-1)^2\sec^6 x \, \underset{du}{\underbrace{\sec x\tan x\, dx}}\\ \amp = \int u^{10}-2u^{8}+u^6\, du \amp (u=\sec x, du=\sec x\tan x dx)\\ \amp = \frac{1}{11}\sec^{11}x-\frac{2}{9}\sec^9 x+\frac{1}{7}\sec x+C\text{.} \end{align*}

Example 1.19.8. Even tangent power, odd secant power.

Compute \(\displaystyle \int \sec^3 x\, dx\text{.}\)
Solution.
Not much we can do here besides integration by parts:
\begin{align*} \int \sec^3 x\, dx \amp = \sec x\tan x-\int \sec x\tan^2 x\, dx \amp (u=\sec x, v'=\sec^2 x)\\ \amp = \sec x\tan x-int \sec^3 x-\sec x\, dx \amp (\tan^2 x=\sec^2 x-1) \\ \amp = \sec x\tan x+\ln\abs{\sec x+\tan x}-\int \sec^3 x\, dx\text{.} \end{align*}
We’ve shown that
\begin{equation*} \int \sec^3 x\, dx=\sec x\tan x+\ln\abs{\sec x+\tan x}-\int \sec^3 x\, dx\text{.} \end{equation*}
Doing some algebra and solving for \(\int \sec^3 x\, dx\text{,}\) we conclude that
\begin{equation*} \int \sec^3 x\, dx=\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln\abs{\sec x+\tan x}+C. \text{.} \end{equation*}

Example 1.19.9. Tangent power.

Compute \(\displaystyle \int \tan^5 x \, dx\text{.}\)
Solution.
Following the suggestion of Procedure 1.19.3 we
\begin{equation*} \tan^5 x=(\tan^2 x)^2\tan x=(\sec^4 x-2\sec^2 x+1)\tan x\text{,} \end{equation*}
from which we conclude
\begin{align*} \int \tan^5 x\, dx \amp = \int \sec^4 x\tan x-2\sec^2 x\tan x+\tan x\, dx \\ \amp = \int \underset{u^3}{\underbrace{\sec^3 x}}\, \underset{du}{\underbrace{\sec x\tan x}}-2\underset{u}{\underbrace{\sec x}} \, \underset{du}{\underbrace{\sec x\tan x}}+\tan x\, dx \\ \amp =\frac{1}{4}\sec^4 x-\sec^2 x-\ln\abs{\cos x}+C\text{.} \end{align*}