Skip to main content

Math 220-2: Kursobjekt

Section 1.12 Exponential functions

Definition 1.12.1. Exponential function.

The exponential function, denoted \(\exp\text{,}\) is defined as the inverse of the natural logarithm function. Using inverse function properties, this means that we have
\begin{equation} \exp(x)=y \iff x=\ln y \hspace{5pt} \text{ for all } x\in \R, y\in (0,\infty)\text{.}\tag{1.12.1} \end{equation}
We also write \(e^x\) for \(\exp(x)\text{.}\)

Definition 1.12.3. Base-\(a\) exponential function.

Let \(a\) be a fixed positive number. Given any \(x\in \R\text{,}\) we define the power expression \(a^x\) as
\begin{equation} a^x=e^{x\ln a}\text{.}\tag{1.12.9} \end{equation}
The exponential function with base \(a\text{,}\) is the function \(f\) with domain \(\R\) defined as
\begin{equation} f(x)=a^x=e^{x\ln a}\tag{1.12.10} \end{equation}
for all \(x\in \R\text{.}\)

Definition 1.12.4. Base-\(a\) logarithm.

Let \(a\) be a fixed positive number, \(a\ne 1\text{.}\) The logarithmic function with base \(a\text{,}\) denoted \(\log_a\) is defined as the inverse function of the base-\(a\) exponential function \(f(x)=a^x\text{.}\)

Example 1.12.9. Solving exponential equations.

Find all \(t\) satisfying \(\displaystyle 2^{-t^2}=\frac{1}{16}\text{.}\) Simplify your answer as much as possible.
Solution.
We have
\begin{align*} 2^{-t^2}=\frac{1}{16}\amp \iff \ln\left(2^{-t^2} \right)= \ln(1/16) \\ \amp \iff -t^2\ln 2=-\ln 16\\ \amp\iff t^2=\frac{\ln 16}{\ln 2} \\ \amp \iff t^2=\log_2 16 \amp (\log_2 16=\ln 16/\ln 2)\\ \amp \iff t^2=4 \amp (2^4=16\iff \log_2 16=4)\\ \amp \iff t=\pm 2\text{.} \end{align*}
Alternatively, using the fact that the function \(f(x)=2^x\) is one-to-one and \(1/16=2^{-4}\text{,}\) we see that
\begin{align*} 2^{-t^2}=\frac{1}{16}\amp \iff 2^{-t^2}=2^{-1/4} \\ \amp \iff -t^2=-4\\ \amp \iff t=\pm 2\text{.} \end{align*}

Example 1.12.10. Exponential and logarithmic derivatives.

Compute \(f'(x)\) for each of the following functions.
  1. \(\displaystyle f(x)=\ln(\sin x)e^{\cos x}\)
  2. \(\displaystyle f(x)=\log_3(2^x+3^{x^2})\)
Solution.
  1. We have
    \begin{align*} f'(x) \amp = (\ln \sin x)'e^{\cos x}+\ln\sin x(e^{\cos x})'\\ \amp = \frac{\cos x}{\sin x}e^{\cos x}+\ln\sin x \cdot e^{\cos x}(-\sin x)\\ \amp = e^{\cos x}(\cot x-\sin x\ln \sin x)\text{.} \end{align*}
  2. We have
    \begin{align*} f'(x) \amp = \frac{(2^x+3^{x^2})'}{\ln 3(2^x+3^{x^2})}\\ \amp = \frac{\ln 2\cdot 2^x+2\ln 3 \cdot x \cdot 3^{x^2}}{\ln 3(2^x+3^{x^2})}\text{.} \end{align*}

Example 1.12.11. Exponential and logarithmic integrals.

Compute the following definite and indefinite integrals.
  1. \(\displaystyle \displaystyle\int (e^t)^2\sin(e^{2t})\, dt\)
  2. \(\displaystyle \displaystyle\int_0^\pi \sin(2^x)2^{\cos(2^x)+x}\, dx\)
Solution.
  1. We have
    \begin{align*} \int (e^t)^2\sin(e^{2t})\, dt \amp \int u \sin (u^2)\, du \amp (u=e^t, du=e^t\, dt\\ \amp = -\frac{1}{2}\cos u^2 +C\\ \amp = -\frac{1}{2}\cos (e^{2t})+C\text{.} \end{align*}
  2. Consider the somewhat tricky substitution: \(u=2^{\cos 2^x}\text{,}\) \(du=-(\ln 2)^2\sin 2^x\cdot 2^x\cdot 2^{\cos 2^x} dx\text{.}\) We then have
    \begin{align*} \int_{0}^\pi \sin(2^x)2^{\cos(2^x)+x}\, dx \amp = -\frac{1}{(\ln 2)^2}\int_{2^{\cos 1}}^{2^{\cos 2^\pi}} du \\ \amp = -\frac{1}{(\ln 2)^2}u\Bigr\vert_{2^{\cos 1}}^{2^{\cos 2^\pi}}\\ \amp = \frac{1}{(\ln 2)^2}(2^{\cos 1}-2^{\cos 2^\pi})\text{.} \end{align*}