Skip to main content Contents
Prev Up Next \(\newcommand{\Z}{{\mathbb Z}}
\newcommand{\Q}{{\mathbb Q}}
\newcommand{\R}{{\mathbb R}}
\newcommand{\C}{{\mathbb C}}
\newcommand{\T}{{\mathbb T}}
\newcommand{\F}{{\mathbb F}}
\newcommand{\PP}{{\mathbb P}}
\newcommand{\HH}{{\mathbb H}}
\newcommand{\compose}{\circ}
\newcommand{\bolda}{{\mathbf a}}
\newcommand{\boldb}{{\mathbf b}}
\newcommand{\boldc}{{\mathbf c}}
\newcommand{\boldd}{{\mathbf d}}
\newcommand{\bolde}{{\mathbf e}}
\newcommand{\boldi}{{\mathbf i}}
\newcommand{\boldj}{{\mathbf j}}
\newcommand{\boldk}{{\mathbf k}}
\newcommand{\boldn}{{\mathbf n}}
\newcommand{\boldp}{{\mathbf p}}
\newcommand{\boldq}{{\mathbf q}}
\newcommand{\boldr}{{\mathbf r}}
\newcommand{\bolds}{{\mathbf s}}
\newcommand{\boldt}{{\mathbf t}}
\newcommand{\boldu}{{\mathbf u}}
\newcommand{\boldv}{{\mathbf v}}
\newcommand{\boldw}{{\mathbf w}}
\newcommand{\boldx}{{\mathbf x}}
\newcommand{\boldy}{{\mathbf y}}
\newcommand{\boldz}{{\mathbf z}}
\newcommand{\boldzero}{{\mathbf 0}}
\newcommand{\boldmod}{\boldsymbol{ \bmod }}
\newcommand{\boldT}{{\mathbf T}}
\newcommand{\boldN}{{\mathbf N}}
\newcommand{\boldB}{{\mathbf B}}
\newcommand{\boldF}{{\mathbf F}}
\newcommand{\boldS}{{\mathbf S}}
\newcommand{\boldE}{{\mathbf E}}
\newcommand{\boldG}{{\mathbf G}}
\newcommand{\boldK}{{\mathbf K}}
\newcommand{\boldL}{{\mathbf L}}
\DeclareMathOperator{\lns}{lns}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\Span}{span}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\NS}{null}
\DeclareMathOperator{\RS}{row}
\DeclareMathOperator{\CS}{col}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\Fix}{Fix}
\DeclareMathOperator{\Aff}{Aff}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Tor}{Tor}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\mdeg}{mdeg}
\DeclareMathOperator{\Lt}{Lt}
\DeclareMathOperator{\Lc}{Lc}
\DeclareMathOperator{\disc}{disc}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\adj}{adj}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\diver}{div}
\DeclareMathOperator{\flux}{flux}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\ab}{ab}
\newcommand{\surjects}{\twoheadrightarrow}
\newcommand{\injects}{\hookrightarrow}
\newcommand{\bijects}{\leftrightarrow}
\newcommand{\isomto}{\overset{\sim}{\rightarrow}}
\newcommand{\floor}[1]{\lfloor#1\rfloor}
\newcommand{\ceiling}[1]{\left\lceil#1\right\rceil}
\newcommand{\mclass}[2][m]{[#2]_{#1}}
\newcommand{\val}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\abs}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\valuation}[2][]{\left\lvert #2\right\rvert_{#1}}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\anpoly}{a_nx^n+a_{n-1}x^{n-1}\cdots +a_1x+a_0}
\newcommand{\anmonic}{x^n+a_{n-1}x^{n-1}\cdots +a_1x+a_0}
\newcommand{\bmpoly}{b_mx^m+b_{m-1}x^{m-1}\cdots +b_1x+b_0}
\newcommand{\pder}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\normalin}{\trianglelefteq}
\newcommand{\angvec}[1]{\langle #1\rangle}
\newcommand{\varpoly}[2]{#1_{#2}x^{#2}+#1_{#2-1}x^{#2-1}\cdots +#1_1x+#1_0}
\newcommand{\varpower}[1][a]{#1_0+#1_1x+#1_1x^2+\cdots}
\newcommand{\limasto}[2][x]{\lim_{#1\rightarrow #2}}
\newenvironment{linsys}[2][m]{
\begin{array}[#1]{@{}*{#2}{rc}r@{}}
}{
\end{array}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 1.25 Improper integrals: convergence tests
Theorem 1.25.1 . Direct comparison test.
Let \(f\) and \(g\) be nonnegative functions on an interval \(I\text{,}\) and suppose \(f(x)\leq g(x)\) for all \(x\) in \(I\text{.}\) If the integral of \(g\) over \(I\) converges, then the integral of \(f\) over \(I\) converges. Using logical notation:
\begin{equation}
\begin{array}{c} \text{ integral of \(g\) over } \\ \text{\(I\) converges} \end{array} \implies \begin{array}{c} \text{ integral of \(f\) over} \\ \text{\(I\) converges} \end{array}\text{.}\tag{1.25.1}
\end{equation}
Equivalently, using the contrapositive of
(1.25.1) , we have
\begin{equation}
\begin{array}{c} \text{ integral of \(f\) over} \\ \text{\(I\) diverges} \end{array} \implies \begin{array}{c} \text{ integral of \(g\) over} \\ \text{\(I\) diverges} \end{array}\text{.}\tag{1.25.2}
\end{equation}
Theorem 1.25.2 . Limit comparison test.
Let \(f\) and \(g\) be continuous and positive on the interval \(I\text{.}\)
If \(I=[a,\infty)\) and \(\displaystyle\lim_{x\to\infty}\frac{f(x)}{g(x)}=L\) with \(0\lt L \lt \infty\text{,}\) then
\begin{equation*}
\int_a^\infty f(x)\, dx \text{ converges } \iff \int_a^\infty g(x)\, dx \text{ converges }\text{.}
\end{equation*}
If \(I=(-\infty,a]\) and \(\displaystyle\lim_{x\to-\infty}\frac{f(x)}{g(x)}=L\) with \(0\lt L \lt \infty\text{,}\) then
\begin{equation*}
\int_{-\infty}^a f(x)\, dx \text{ converges } \iff \int_{-\infty}^a g(x)\, dx \text{ converges }\text{.}
\end{equation*}
If \(I=(a,b]\) and \(\displaystyle\lim_{x\to a^+}\frac{f(x)}{g(x)}=L\) with \(0\lt L \lt \infty\text{,}\) then
\begin{equation*}
\int_{a}^b f(x)\, dx \text{ converges } \iff \int_a^b g(x)\, dx \text{ converges }\text{.}
\end{equation*}
If \(I=[a,b)\) and \(\displaystyle\lim_{x\to b^-}\frac{f(x)}{g(x)}=L\) with \(0\lt L \lt \infty\text{,}\) then
\begin{equation*}
\int_{a}^b f(x)\, dx \text{ converges } \iff \int_a^b g(x)\, dx \text{ converges }\text{.}
\end{equation*}
Example 1.25.3 . Comparison test.
Decide whether \(\displaystyle\int_2^\infty \frac{1}{x^5+\sqrt{x+3}}\, dx\) converges.
Example 1.25.4 . Comparison test.
Decide whether \(\displaystyle\int_1^\infty \frac{2+\sin x}{x}\, dx\) converges.
Example 1.25.5 . Comparison test.
Decide whether \(\displaystyle\int_0^\infty\frac{1}{\sqrt{x}+3x^5}\, dx\) converges.
Example 1.25.6 . Comparison test.
Let \(f(x)=ax^2+bx+c\) be any fixed irreducible quadratic polynomial with \(a>0\text{.}\) Decide whether \(\displaystyle\int_{-\infty}^\infty \frac{1}{f(x)}\, dx\) exists.