Skip to main content

Section 2.5 Surfaces and their area

Subsection 2.5.1 Surface parametrizations

We use two distinct methods of describing curves in \(\R^2\) or \(\R^3\text{:}\) implicitly, as the set of solutions to an equation, and parametrically as the image of a parametrization \(\boldr\colon [a,b]\rightarrow \R^n\text{.}\) For example, we typically describe the unit circle \(\mathcal{C}\) centered at the origin either as \(\mathcal{C}\colon x^2+y^2=1\) or \(\mathcal{C}\colon \boldr(t)=(\cos t, \sin t), 0\leq t\leq 2\pi\text{.}\) These are abbreviated forms of the following implicit and parametric representations of \(\mathcal{C}\text{:}\)

\begin{align*} \text{Implicit: } \ \mathcal{C}\amp=\{(x,y)\in \R^2\colon x^2+y^2=1\}\\ \text{Parametric: } \ \mathcal{C}\amp=\{(\cos t, \sin t)\colon 0\leq t\leq 2\pi\} \text{.} \end{align*}

The first description is called implicit, as it is up to us to find actual pairs \((x,y)\) satisfying the defining equation; the parametrization, in contrast, gives us an explit recipe for producing points on \(\mathcal{C}\text{.}\)

When dealing with surfaces \(\mathcal{S}\subseteq \R^3\text{,}\) we have for the most part used implicit descriptions: e.g.,

\begin{align*} \mathcal{S}_1\ \amp \colon x^2+y^2+z^2=1\\ \mathcal{S}_2\ \amp \colon z=\sqrt{x^2+y^2}\\ \mathcal{S}_3\ \amp \colon 3x+2y+5z=0 \text{.} \end{align*}

We now supplement this method with parametric descriptions of surfaces.

Definition 2.5.1. Surface parametrization.

A surface parametrization with parameter domain \(\mathcal{R}\subseteq \R^2\) is a continuous function

\begin{align*} \boldr\colon \mathcal{R} \amp\rightarrow \R^3 \\ (u,v) \amp\mapsto (f_1(u,v),f_2(u,v),f_3(u,v)) \text{,} \end{align*}

that is one-to-one on the interior of \(\mathcal{R}\text{.}\) The functions \(f_i(t)\) defining \(\boldr\) are called component functions.

The set

\begin{equation*} \mathcal{S}=\{(f_1(u,v),f_2(u,v),f_3(u,v)\colon (u,v)\in \mathcal{R}\} \end{equation*}

of outputs of \(\boldr\) is called the surface parametrized by \(\boldr\text{.}\)

Example 2.5.3. Plane parametrization.

Find a parametrization of the plane \(\mathcal{S}\colon x+2y-3=5\)

.
Solution.

Looking at the equation, we can take \(\boldn=\angvec{1,2,-3}\) to be our normal vector. Next, the point \(P=(5,0,0)\) is easily seen to be a point of \(\mathcal{S}\text{.}\) To find vectors \(\boldw=\angvec{w_1,w_2,w_3}\) orthogonal to \(\boldn\) we solve by inspection the linear equation

\begin{equation*} \boldn\cdot\angvec{w_1,w_2,w_3}=w_1+2w_2-3w_3=0\text{.} \end{equation*}

The vectors \(\boldw_1=\angvec{2,-1,0}\) and \(\boldw_2=\angvec{3,0,1}\) are two such solutions, and clearly \(\boldw_1\ne c\boldw_2\) for any \(c\in \R\text{.}\) We conclude that

\begin{equation*} \boldr(u,v)=(5,0,0)+u\boldw_1+v\boldw_2=(5+2u+3v,-u, v) \end{equation*}

is a parametrization of \(\mathcal{S}\text{.}\)

The Sage cell below caries out Procedure 2.5.2 and produces a plot of the plane \(\mathcal{S}\) (using parametric_plot3d()) along with a chosen point \(P\text{,}\) the chosen vectors \(\boldw_1, \boldw_2\) (normalized), and the grid on the plane these two vectors define. To solve for \(P, \boldw_1, \boldw_2\) we use some linear algebra functions: e.g., solve_right(), right_kernel().basis().

Remark 2.5.4. \(u,v\)-level curves.

Given a surface parametrization \(\boldr(u,v)\) a useful tool for visualizing the corresponding surface \(\mathcal{S}\) is to consider the curves with parametrizations \(\bolds(v)=\boldr(c,v)\) obtained by setting \(u=c\) for different choices of \(c\text{,}\) or similarly, curves with parametrizations \(\bolds(u)=\boldr(u,d)\) obtained by setting \(v=d\) for different choices of \(d\text{.}\) We call such curves \(u\)- and \(v\)-level curves of the surface. They are the images under \(\boldr(u,v)\) of the rectangular grid in the parameter domain defined by the equations \(u=c\) and \(v=d\text{,}\) and they make a sort of (usually nonrectangular) grid of the surface \(\mathcal{S}\text{.}\)

Example 2.5.5. Sphere of radius \(R\) parametrization.

Fix \(R>0\text{.}\) Spherical coordinates tells us that the points of the sphere \(\mathcal{S}\colon x^2+y^2+z^2=R^2\) can be described in the form \(P=(R\sin\phi\cos\theta, R\sin\phi\sin\theta,R\cos\phi)\) for \(0\leq \phi\leq \pi\) and \(0\leq \theta\leq 2\pi\text{.}\) This gives rise to the parametrization

\begin{align*} \boldr\colon [0,\pi]\times [0,2\pi] \amp \rightarrow \R^3\\ (\phi, \theta) \amp\mapsto (R\sin\phi\cos\theta, R\sin\phi\sin\theta,R\cos\phi) \text{.} \end{align*}

Line of the form \(\phi=c\) and \(\theta=d\) in the parameter domain \(\mathcal{R}=[0,\pi]\times [0,2\pi]\) get mapped by \(\boldr\) to latitudinal and longitudinal circles on the sphere, respectively; these are the \(phi\)- and \(\theta\)-level curves of the parametrization.

Example 2.5.6. Circular cylinder.

Fix \(R>0\) and consider the surface parametrization

\begin{align*} \boldr\colon [0,2\pi]\times [-2, 2] \amp \rightarrow \R^3 \\ (\theta,v) \amp\mapsto (R\cos \theta, R\sin \theta, v) \text{.} \end{align*}

Fixing \(v=d\) for any \(-2\leq d\leq 2\text{,}\) we see that the corresponding curve parametrization \(\bolds(\theta)=(R\cos \theta, R\sin \theta, d)\) is a circle of radius \(R\) centered around the \(z\)-axis. Thus as we let \(d\) range between \(-2\) and \(2\) the \(v=d\)-level curves sweep out the cylinder of radius \(R\text{,}\) centered around the \(z\)-axis, between the planes \(z=-2\) and \(z=2\text{.}\)

Example 2.5.7. Parametrizing graphs of functions.

Recall that given a function \(z=f(x,y)\) with domain \(D\) we define its graph to the be the surface

\begin{equation*} \mathcal{S}=\{(x,y,f(x,y))\colon (x,y)\in D\}\text{.} \end{equation*}

It follows directly from this description that \(\mathcal{S}\) is parametrized by

\begin{align*} \boldr\colon D \amp\rightarrow \R^3 \\ (x,y)\amp\mapsto (x,y,f(x,y)) \text{.} \end{align*}

Thus all graphs of functions \(z=f(x,y)\) can be thought of as parametrized surfaces. The converse is not true: the sphere \(x^2+y^2+z^2=1\) has a surface parametrization, but it is not the graph of a function.

More generally, if a surface is defined implicitly in the form \(z=f(x,y)\) or \(x=g(y,z)\) or \(y=h(x,z)\) (i.e., one variable is described as a function of the others), then we have immediate parametrizations of the form \(\boldr(x,y)=(x,y,f(x,y))\text{,}\) \(\bolds(y,z)=(g(y,z),y,z)\text{,}\) \(\boldp(x,z)=(x,h(x,z),z)\text{.}\) This is sometimes a useful trick.

Example 2.5.8. Cone parametrization.

Let \(\mathcal{S}_1\) be the half-cone \(y=\sqrt{x^2+z^2}\text{,}\) and let \(\mathcal{S}_2\) be the full cone \(y^2=x^2+z^2\text{.}\) Find parametrizations of \(\mathcal{S}_1\) and \(\mathcal{S}_2\text{.}\)

Solution.

Following Example 2.5.7, we easily see that \(\mathcal{S}_1\) is parametrized by \(\boldr(u,v)=(u,\sqrt{u^2+v^2})\)

If we wanted to settle for a piecewise parametrization of \(\mathcal{S}_2\) we could proceed exactly as above, parametrizing the right half of \(\mathcal{S}_2\) as \(\boldr_1(u,v)=(u,\sqrt{u^2+v^2})\) and the left half as \(\boldr_2(u,v)=(u,v,-(u^2+v^2))\text{.}\) Instead, we use a variant of spherical coordinates. For \(P=(x,y,z)\in \R^3\text{,}\) let \(\rho=\abs{(x,y,z)}\text{,}\) let \(\phi\) be the angle between \(\overrightarrow{OP}\) and the positive \(y\)-axis (as opposed to the \(z\)-axis), and let \(\theta\) be the angle between the positive \(z\)-axis and the projection of \(\overrightarrow{OP}\) onto the \(xz\)-plane. With this setup we have

\begin{align*} x \amp=\rho\sin\phi\sin\theta \\ y \amp=\rho\cos\phi \\ z \amp=\rho\sin\phi\cos\theta \\ r^2 \amp=z^2+x^2=\rho^2\sin^2\phi \text{.} \end{align*}

(Essentially this is just the usual spherical coordinates along with the “cyclical” renaming of the axes \(y\rightarrow z, z\rightarrow x, x\rightarrow y\text{.}\)) With respect to these coordinates, the half-cone \(\mathcal{S}_1\) can be described implicitly as \(\phi=\pi/4\text{,}\) \(0\leq \rho\text{.}\) To get the full cone \(\mathcal{S}_2\) we simply remove the restriction that \(\rho\) be nonnegative. This gives rise to the parametrization

\begin{align*} \boldr(\rho,\theta)\amp=(\rho\sin(\pi/4)\sin\theta, \rho\cos(\pi/4), \rho\sin(\pi/4)\cos\theta) \\ \amp=\frac{\sqrt{2}}{2}(\rho\cos\theta, \rho, \rho\sin\theta) \\ \mathcal{R}\amp\colon 0\leq \phi\leq \pi, -\infty < \rho < \infty \text{.} \end{align*}

The Sage cells below use paramatric_plot3d() to graph some of the surfaces from the examples above, along with the level curves coming from the usual rectangular grid in the parameter domain.

Subsection 2.5.2 Tangent planes and area

Definition 2.5.9. Parametrization tangent vectors.

Given a surface parametrization \(\boldr(u,v)=(f_1(u,v), f_2(u,v), f_3(u,v))\text{,}\) its \(\boldu\)- and \(\boldv\)-tangent vectors are the functions \(\boldr_u, \boldr_v\) defined as

\begin{align*} \boldr_u \amp= \angvec{\frac{\partial f_1}{\partial u}, \frac{\partial f_2}{\partial u}, \frac{\partial f_3}{\partial u}}\\ \boldr_v \amp= \angvec{\frac{\partial f_1}{\partial v}, \frac{\partial f_2}{\partial v}, \frac{\partial f_3}{\partial v}}\text{.} \end{align*}

Definition 2.5.10. Smooth surface parametrization.

A surface parametrization \(\boldr\colon \mathcal{R}\rightarrow \R^3\) is smooth if on the interior of \(\mathcal{R}\) (i) the tangent vector functions \(\boldr_u\) and \(\boldr_v\) are continuous and (ii) \(\boldr_u(u,v)\times \boldr_v(u,v)\ne \angvec{0,0,0}\text{.}\)

Definition 2.5.11. Tangent plane to smooth surface.

Let \(\mathcal{S}\) be a surface with smooth parametrization \(\boldr\colon \mathcal{R}\rightarrow \R^3\text{,}\) let \((u,v)\) be a point of the interior of \(\mathcal{R}\text{,}\) and let \(P=\boldr(u,v)\) be the corresponding point on \(\mathcal{S}\text{.}\) The tangent plane to \(\mathcal{S}\) at \(P\) is the plane passing through \(P\) with normal vector \(\boldr_u(u,v)\times \boldr_v(u,v)\text{.}\)

Example 2.5.12. Tangent plane.

Let \(\mathcal{S}\) be the surface with parametrization \(\boldr(u,v)=(u^2, v^2, uv)\text{.}\) Find an equation of the tangent plane to \(\mathcal{S}\) at the point \(P=(1,1,1)\text{.}\)

Solution.

We compute

\begin{align*} \boldr_u \amp= \angvec{2u, 0, v} \\ \boldr_v\amp=\angvec{0,2v, u} \\ \boldr_u\times\boldr_v \amp=\angvec{-2v^2, -2u^2, 4uv} \text{.} \end{align*}

At \(P=(1,1,1)=\boldr(1,1)\) we have

\begin{equation*} \boldr_u\times\boldr_v(1,1)=\angvec{-2,-2,4}\text{.} \end{equation*}

This \(\angvec{-2,-2,4}\) is a normal vector of the tangent plane. We can always scale this by any nonzero constant to get another, more convenient normal vector: e.g., \(\boldn=-\frac{1}{2}\angvec{-2,-2,4}=\angvec{1,1,-2}\text{.}\) Lastly, the plane passing through \(P=(1,1,1)\) with normal vector \(\boldn=\angvec{1,1,-2}\) has defining equation

\begin{equation*} (x-1)+(y-1)-2(z-1)=0\text{.} \end{equation*}

Definition 2.5.13. Surface area.

Let \(\mathcal{S}\) be a surface with smooth parametrization \(\boldr\colon \mathcal{R}\rightarrow \R^3\text{,}\) where \(\mathcal{R}\subseteq\R^2\) is a bounded set. The area of \(\mathcal{S}\) is defined as

\begin{equation*} \operatorname{area}=\iint\limits_\mathcal{R}\abs{\boldr_u\times \boldr_v}\, dA\text{.} \end{equation*}

Example 2.5.14. Surface area of sphere.

Fix \(R> 0\text{.}\) Compute the area of the sphere \(\mathcal{S}\colon x^2+y^2+z^2=R^2\text{.}\)

Solution.
  1. First we parametrize \(\mathcal{S}\) using

    \begin{align*} \boldr(\phi,\theta)\amp =(R\sin\phi\cos\theta, R\sin\phi\sin\theta, R\cos\phi)\\ \mathcal{R}\amp\colon 0\leq \phi\leq \pi, 0\leq \theta\leq 2\pi\text{,} \end{align*}

    as in Example 2.5.5.

  2. Now assemble ingredients:

    \begin{align*} \boldr_\phi \amp=\langle R\cos\phi\cos\theta, R\cos\phi\sin\theta, -R\sin\phi\rangle \\ \boldr_\theta\amp=\langle-R\sin\phi\sin\theta, R\sin\phi\sin\theta, 0\rangle\\ \boldr_\phi\times \boldr_\theta\amp=R^2\sin\phi\angvec{\sin\phi\cos\theta, \sin\phi\sin\theta, \cos\phi} \\ \abs{\boldr_\phi\times\boldr_\theta}\amp =\val{R^2\sin\phi}\abs{\angvec{\sin\phi\cos\theta, \sin\phi\sin\theta, \cos\phi}}\\ \amp=R^2\sin\phi\text{,} \end{align*}

    where the last equality follows since \(\sin\phi\geq 0\) for \(\phi\in [0,\pi]\) and \(\angvec{\sin\phi\cos\theta, \sin\phi\sin\theta,\cos\phi}\) parametrizes points on the unit sphere!

  3. Finally, we integrate

    \begin{align*} \operatorname{area} \mathcal{S} \amp=\iint\limits_\mathcal{R}R^2\sin\phi\, dA \\ \amp=\int_0^\pi\int_0^{2\pi}R^2\sin\phi\, d\theta\, d\phi \\ \amp = 2\pi\, R^2(-\cos\phi)\Bigr\vert_0^{\pi}\\ \amp = 4\pi R^2\text{.} \end{align*}

Example 2.5.15. Surface area of paraboloid.

Find the surface area of the portion of the paraboloid \(\mathcal{S}\colon z=x^2+y^2\) that lies below the plane \(z=4\text{.}\)

Solution.
  1. First parametrize, using cylindrical coordinates:

    \begin{align*} \bolds(r, \theta) \amp = (r\cos\theta, r\sin\theta, r^2)\\ \mathcal{R}\amp\colon 0\leq r\leq 2, 0\leq \theta\leq 2\pi \text{.} \end{align*}

    Here the region \(\mathcal{R}\) is a polar description of the projection of \(\mathcal{S}\) on the \(xy\)-plane, obtained by first observing that the intersection of the paraboloid with the plane \(z=4\) is given by \(z=r^2=4\text{,}\) or \(r=2\text{.}\)

  2. Now assemble ingredients:

    \begin{align*} \bolds_r \amp = \langle\cos\theta, \sin\theta, 2r\rangle)\\ \bolds_\theta \amp= \angvec{-r\sin\theta, r\cos\theta, 0}\\ \bolds_r\times \bolds_\theta \amp=\angvec{-2r^2\cos\theta, -2r^2\sin\theta, r} \\ \abs{\bolds_r\times \bolds_\theta} \amp=\sqrt{4r^4\cos^2\theta+4r^4\sin^2\theta+r^2}\\ \amp = \sqrt{4r^4+r^2}=r\sqrt{4r^2+1}\text{.} \end{align*}
  3. Finally, we integrate

    \begin{align*} \operatorname{area}\mathcal{S} \amp= \iint\limits_\mathcal{R}r\sqrt{4r^2+1}\, dA \\ \amp=\int_0^{2\pi}\int_0^2r\sqrt{4r^2+1}\, dr\, d\theta \\ \amp =2\pi \left(\frac{1}{12}(4r^2+1)^{3/2}\right)\Bigr\vert_0^2\\ \amp= \frac{\pi}{6}(17^{3/2}-1) \text{.} \end{align*}
Note: we could have used the more straightforward parametrization \(\boldr(x,y)=(x,y,x^2+y^2)\text{,}\) noticing that \(z=x^2+y^2\) expresses \(z\) as a function of \(x\) and \(y\) (see Example 2.5.7). Interestingly, the integral in (3) for this choice of parametrization is best computed using a polar coordinates change of variable.