| Symbol |
Description |
Location |
| \(x\in A\) |
set membership |
Definition 0.1.1 |
| \(A\subseteq B\) |
set inclusion |
Definition 0.1.3 |
| \(A\cup B\) |
set union |
Definition 0.1.8 |
| \(A\cap B\) |
set intersection |
Definition 0.1.8 |
| \(A-B\) |
set difference |
Definition 0.1.8 |
| \(\{\ \}, \emptyset\) |
the empty set |
Definition 0.1.9 |
| \(\mathbb{R}\) |
the real numbers |
Definition 0.1.9 |
| \(\mathbb{Z}\) |
the integers |
Definition 0.1.9 |
| \(\mathbb{Q}\) |
the rational numbers |
Definition 0.1.9 |
| \(A\times B\) |
Cartesian product |
Definition 0.1.10 |
| \(f\colon A\rightarrow B\) |
a function from \(A\) to \(B\)
|
Definition 0.1.13 |
| \(f(A)\) |
image of the set \(A\) under \(f\)
|
Definition 0.1.18 |
| \(\operatorname{im} f\) |
image of a function \(f\)
|
Definition 0.1.18 |
| \(f\circ g\) |
the composition of \(f\) and \(g\)
|
Definition 0.1.21 |
| \(\norm{P}\) |
norm of a partition |
Definition 1.1.1 |
| \(\iint\limits_\mathcal{R} f(x,y)\, dA\) |
double integral over region \(\mathcal{R}\)
|
Definition 1.3.2 |
| \(\operatorname{avg}_\mathcal{R}(f)\) |
average value of \(f\) over \(\mathcal{R}\)
|
Definition 1.4.4 |
| \(\iiint\limits_D f(x,y,z)\, dV\) |
double integral over region \(D\)
|
Definition 1.5.3 |
| \(\operatorname{avg}_\mathcal{R}(f)\) |
average value of \(f\) over \(\mathcal{R}\)
|
Definition 1.5.16 |
| \(\frac{\partial(g_1,g_2,\dots, g_n)}{\partial(x_1,x_2,\dots, x_n)}\) |
Jacobian of \(G=(g_1,g_2,\dots, g_n)\)
|
Definition 1.6.2 |
| \(\nabla\times \boldF\) |
curl of vector field \(\boldF\)
|
Definition 2.3.12 |
| \(\curl \boldF\) |
curl of vector field \(\boldF\)
|
Definition 2.3.12 |
| \(\nabla\cdot \boldF\) |
divergence of vector field \(\boldF\)
|
Definition 2.4.9 |
| \(\iint\limits_\mathcal{S}f(x,y,z)\, d\sigma\) |
surface integral of scalar function |
Definition 2.6.1 |