Skip to main content

Appendix A Notation

Symbol Description Location
\(x\in A\) set membership Definition 0.1.1
\(A\subseteq B\) set inclusion Definition 0.1.3
\(A\cup B\) set union Definition 0.1.8
\(A\cap B\) set intersection Definition 0.1.8
\(A-B\) set difference Definition 0.1.8
\(\{\ \}, \emptyset\) the empty set Definition 0.1.9
\(\mathbb{R}\) the real numbers Definition 0.1.9
\(\mathbb{Z}\) the integers Definition 0.1.9
\(\mathbb{Q}\) the rational numbers Definition 0.1.9
\(A\times B\) Cartesian product Definition 0.1.10
\(f\colon A\rightarrow B\) a function from \(A\) to \(B\) Definition 0.1.13
\(f(A)\) image of the set \(A\) under \(f\) Definition 0.1.18
\(\operatorname{im} f\) image of a function \(f\) Definition 0.1.18
\(f\circ g\) the composition of \(f\) and \(g\) Definition 0.1.21
\(\norm{P}\) norm of a partition Definition 1.1.1
\(\iint\limits_\mathcal{R} f(x,y)\, dA\) double integral over region \(\mathcal{R}\) Definition 1.3.2
\(\operatorname{avg}_\mathcal{R}(f)\) average value of \(f\) over \(\mathcal{R}\) Definition 1.4.4
\(\iiint\limits_D f(x,y,z)\, dV\) double integral over region \(D\) Definition 1.5.3
\(\operatorname{avg}_\mathcal{R}(f)\) average value of \(f\) over \(\mathcal{R}\) Definition 1.5.16
\(\frac{\partial(g_1,g_2,\dots, g_n)}{\partial(x_1,x_2,\dots, x_n)}\) Jacobian of \(G=(g_1,g_2,\dots, g_n)\) Definition 1.6.2
\(\nabla\times \boldF\) curl of vector field \(\boldF\) Definition 2.3.12
\(\curl \boldF\) curl of vector field \(\boldF\) Definition 2.3.12
\(\nabla\cdot \boldF\) divergence of vector field \(\boldF\) Definition 2.4.9
\(\iint\limits_\mathcal{S}f(x,y,z)\, d\sigma\) surface integral of scalar function Definition 2.6.1