Skip to main content

Section 1.8 Substitution: spherical coordinates

As our last application of TheoremĀ 1.6.6 we consider the spherical coordinate equations

\begin{align} x \amp = \rho\sin\phi\cos\theta\tag{1.8.1}\\ y\amp =\rho\sin\phi\sin\theta \tag{1.8.2}\\ z \amp =\rho\cos\phi \text{,}\tag{1.8.3} \end{align}

along with the auxiliary equations

\begin{align} r \amp = \sqrt{x^2+y^2}=\rho\sin\phi \tag{1.8.4}\\ \tan \phi \amp = \frac{z}{r} \text{,}\tag{1.8.5} \end{align}

derived from the diagram in FigureĀ 1.8.1.

Figure 1.8.1. Spherical coordinates
As before we think of these equations as defining a function

\begin{align*} G\colon \R^3 \amp\rightarrow \R^3 \\ (\rho, \phi, \theta)\amp\mapsto (\underset{x}{\underbrace{\rho\sin\phi\cos\theta}},\underset{y}{\underbrace{\rho\sin\phi\sin\theta}}, \underset{z}{\underbrace{\rho\cos\phi}}) \end{align*}

from \(\rho\phi\theta\)-space to \(xyz\)-space.

Remark 1.8.4. Converting to spherical coordinates.

Example 1.8.5. Average distance over a solid sphere.

Compute the average distance to the origin of points \((x,y,z)\) lying within the sphere \(x^2+y^2+z^2= R^2\text{,}\) where \(R\) is a fixed positive constant.

Solution.

Let \(D\) be the region lying within the sphere. Observe that the function in question is \(f(x,y,z)=\sqrt{x^2+y^2+z^2}\text{.}\) In spherical coordinates the solid sphere is described as

\begin{equation*} \{(\rho, \phi, \theta)\colon 0\leq \theta\leq 2\pi, 0\leq \phi\leq \pi, 0\leq \rho\leq R\}\text{.} \end{equation*}

We have

\begin{align*} \operatorname{avg}_D f \amp =\frac{1}{\operatorname{vol} D} \iiint\limits_D \sqrt{x^2+y^2+z^2}\, dV \\ \amp=\frac{3}{4\pi R^3}\int_0^{2\pi}\int_0^\pi\int_0^R\rho\cdot \rho^2\sin\phi\, d\rho\, d\phi\, d\theta \amp \text{(spher. subst.)}\\ \amp = \frac{3}{2 R^3}\pi\int_0^\pi\sin\phi\, d\phi \int_0^R\rho^3\, d\rho\\ \amp = \frac{3}{2 R^3} (-\cos\phi)\Bigr\vert_0^{\pi}\left(\frac{1}{4}\rho^4\right)\Bigr\vert_0^R\\ \amp =\frac{3}{4}R\text{.} \end{align*}

Example 1.8.6. Volume of ice cream cone.

Let \(D\) be the region lying above the cone \(z=\sqrt{x^2+y^2}\) and within the sphere \(x^2+y^2+(z-R)^2=R^2\text{,}\) where \(R\) is a fixed positive constant. Compute the volume of \(D\) as a triple integral.

Solution.

First we convert the equation \(z=\sqrt{x^2+y^2}\) defining the cone into spherical coordinates with the help of the auxiliary equations (1.8.4)ā€“(1.8.5):

\begin{align*} z=\sqrt{x^2+y^2} \amp \iff \frac{z}{r}=1\\ \amp\iff \tan\phi=1 \\ \amp \iff \phi=\pi/4\text{.} \end{align*}

We see that for a point to lie within the cone \(z=\sqrt{x^2+y^2}\) we need \(0\leq \phi\leq \pi/4\text{.}\) Next, we describe the given sphere in spherical coordinates:

\begin{align*} x^2+y^2+(z-R)^2\leq R^2\amp\iff x^2+y^2+z^2-2Rz\leq 0 \\ \amp\iff \rho^2\leq 2R\rho\cos\phi \\ \amp \iff \rho\leq 2R\cos\phi \text{ or } \rho=0\\ \amp \iff 0\leq \rho\leq 2R\cos\phi\text{.} \end{align*}

Thus the spherical description of \(D\) is

\begin{equation*} \{(\rho, \phi,\theta)\colon 0\leq \theta\leq 2\pi, 0\leq \phi\leq \pi/4, 0\leq \rho\leq 2R\cos\phi\}\text{.} \end{equation*}

Now compute

\begin{align*} \operatorname{vol} D \amp=\iiint\limits_D 1\, dV \\ \amp = \int_0^{2\pi}\int_0^{\pi/4}\int_0^{2R\cos\phi}\rho^2\sin\phi\, d\rho\, d\phi\, d\theta \amp \text{(spher. coord.)}\\ \amp =2\pi\int_0^{\pi/4}\frac{1}{3}\sin\phi(2R\cos\phi)^3\, d\phi \\ \amp =\frac{16}{3}\pi R^3\int_0^{\pi/4}\sin\phi\cos^3\phi\, d\phi\\ \amp =\frac{16}{3}\pi R^3\left(-\frac{1}{4}\cos^4\phi\right)\Bigr\vert_0^{\pi/4}\\ \amp =\frac{16}{12}\pi R^3(1-(\sqrt{2}/2)^4)\\ \amp =\frac{16}{12}\pi R^3(3/4)\\ \amp =\pi R^3\text{.} \end{align*}