Definition 1.7.1. Logarithm.
Given \(z\in \C-\{0\}\text{,}\) we define the logarithm of \(z\text{,}\) denoted \(\log z\text{,}\) to be the infinite set
\begin{equation*}
\log z=\{w\in \C\colon \Re w=\ln \abs{z} \text{ and } \Im w\in \arg(z)\}=\{\ln\abs{z}+i(\Arg z+2\pi k)\colon k\in \Z\}\text{.}
\end{equation*}
The principal branch of the logarithm is the function \(\Log\colon \C-(-\infty,0]\rightarrow \C\) defined as
\begin{equation*}
\Log z=\ln\abs{z}+i\Arg z
\end{equation*}