First observe that for all \(r\) we have
\begin{align*}
\int_{\gamma_r} \frac{f(z)}{z-z_0}\, dz \amp = \int_{\gamma_r} \frac{f(z)-f(z_0)+f(z_0)}{z-z_0}\, dz\\
\amp = \int_{\gamma_r} \frac{f(z)-f(z_0)}{z-z_0}\, dz +\int_{\gamma_r} \frac{f(z_0)}{z-z_0}\, dz\\
\amp =\int_{\gamma_r} \frac{f(z)-f(z_0)}{z-z_0}\, dz+2\pi i f(z_0)\text{,}
\end{align*}
and thus
\begin{equation*}
\abs{\int_{\gamma_r} \frac{f(z)}{z-z_0}\, dz-2\pi i f(z_0)}=\abs{\int_{\gamma_r} \frac{f(z)-f(z_0)}{z-z_0}\, dz}\text{.}
\end{equation*}
Let \(\epsilon> 0\text{.}\) We will show that there is a \(\delta> 0\) such that \(r< \delta\) implies
\begin{equation*}
\abs{\int_{\gamma_r} \frac{f(z)}{z-z_0}\, dz-2\pi i f(z_0)}=\abs{\int_{\gamma_r} \frac{f(z)-f(z_0)}{z-z_0}\, dz}\leq \epsilon\text{,}
\end{equation*}
and thus that the limit statement holds. Using continuity at \(z_0\text{,}\) for any \(\epsilon > 0\text{,}\) we can find a \(\delta> 0\) such that \(\abs{z-z_0}< \delta\) implies \(\abs{f(z)-f(z_0)}< \epsilon/(2\pi)\text{.}\) It follows that for any \(0< r< \delta\) we have
\begin{align*}
\abs{\int_{\gamma_r} \frac{f(z)}{z-z_0}\, dz-2\pi i f(z_0)}\amp=\abs{\int_{\gamma_r} \frac{f(z)-f(z_0)}{z-z_0}\, dz}\amp \\
\amp \leq \frac{\epsilon}{2\pi r}\cdot 2\pi r \amp (ML-\text{ineq.})\\
\amp =\epsilon \text{,}
\end{align*}
as desired.