The proof is very simple to the proof of
Theorem 1.18.1: the main fact we use is the Cauchy integral formula applied to elements within
\(A\text{.}\) In more detail, given
\(w\in A\text{,}\) pick a closed ball
\(\overline{B}_s(z_0)\subseteq A\text{,}\) and let
\(\phi=w+se^{it}\text{,}\) \(t\in [0,2\pi]\text{.}\) Next pick
\(R\) and
\(S\) satisfying
\(R_1< R < S < R_2\) such that
\(\overline{B}_s(z_0)\) lies in the annular region
\(R< \abs{z-z_0}< S\text{,}\) and let
\(\gamma_R(t)=z_0+Re^{it}\) and
\(\gamma_S(t)=z_0+Se^{it}\text{,}\) \(t\in [0,2\pi]\text{.}\) (See
Figure 1.20.2.) By the Cauchy integral formula, we have
\begin{equation*}
f(w)=\frac{1}{2\pi i}\int_\phi \frac{f(z)}{z-w}\, dz\text{.}
\end{equation*}
By the principle of path deformation we have
\begin{equation*}
f(w)=\frac{1}{2\pi i}\int_\phi \frac{f(z)}{z-w}\, dz=\frac{1}{2\pi i}\int_{\gamma_S}\frac{f(z)}{z-w}\, dz-\frac{1}{2\pi i}\int_{\gamma_R}\frac{f(z)}{z-w}\, dz \text{.}
\end{equation*}
Since \(\abs{(w-z_0)/(z-w_0)}< 1\) for all \(z\in \gamma_S\text{,}\) we have
\begin{align*}
\frac{1}{2\pi i}\int_{\gamma_S}\frac{f(z)}{z-w}\, dw \amp = \frac{1}{2\pi i}\int_{\gamma_S}\frac{f(z)}{z-z_0}\cdot \frac{1}{1-(w-z_0)/(z-z_0)}\, dw \\
\amp = \frac{1}{2\pi i}\int_{\gamma_S}(\frac{f(z)}{z-z_0}\sum_{n=0}^\infty((w-z_0)/(z-z_0))^n)\, dz\\
\amp =\frac{1}{2\pi i} \sum_{n=0}^\infty\int_{\gamma_S}(\frac{f(z)}{(z-z_0)^{n+1}}\, dz)(w-z_0)^n\\
\amp = \sum_{n=0}^\infty a_n(w-z_0)^n , \ a_n=\frac{1}{2\pi i}\int_{\gamma_S}\frac{f(z)}{(z-z_0)^n}\, dz\text{.}
\end{align*}
Similarly, since \(\abs{(z-z_0)/(w-z_0)}< 1\) for all \(z\in \gamma_R\text{,}\) we have
\begin{align*}
\frac{1}{2\pi i}\int_{\gamma_R}\frac{f(z)}{z-w}\, dw \amp = \frac{1}{2\pi i}\int_{\gamma_R}\frac{f(z)}{w-z_0}\cdot \frac{-1}{1-(z-z_0)/(w-z_0)}\, dw \\
\amp = -\frac{1}{2\pi i}\int_{\gamma_R}(\sum_{n=0}^\infty\frac{f(z)(z-z_0)^{n}}{(w-z_0)^{n+1}})\, dz\\
\amp = -\frac{1}{2\pi i}\sum_{n=0}^\infty\int_{\gamma_R}(\frac{f(z)}{(z-z_0)^{n}}\, dz)(w-z_0)^{n+1}\\
\amp = -\sum_{n=1}^\infty b_n(w-z_0)^{-n}, \ b_n=\frac{1}{2\pi i}\int_{\gamma_R}f(z)(z-z_0)^{n-1}\, dz\text{.}
\end{align*}
(Note that in both these computations we are justified in bringing the integral into the infinite sum thanks to the uniform convergence of this sum to the given function.)
Putting it all together, we have
\begin{align*}
f(w)\amp =\frac{1}{2\pi i}\int_{\gamma_S}\frac{f(z)}{z-w}\, dz-\frac{1}{2\pi i}\int_{\gamma_R}\frac{f(z)}{z-w}\, dz\\
\amp = \sum_{n=0}^\infty a_n(w-z_0)^n+\sum_{n=1}^\infty \frac{b_n}{(w-z_0)^n}
\end{align*}
for all \(w\in A\text{,}\) where (using the principle of deformation once again)
\begin{align*}
a_n \amp=\frac{1}{2\pi i}\int_{\gamma_S}\frac{f(z)}{(z-z_0){n+1}}\, dz=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{(z-z_0){n+1}}\, dz \\
b_n \amp=\frac{1}{2\pi i}\int_{\gamma_R}f(z)(z-z_0)^{n-1}\, dz=\frac{1}{2\pi i}\int_{\gamma}f(z)(z-z_0)^{n-1}\, dz \text{.}
\end{align*}
Recall that \(\gamma(t)=z_0+re^{it}\text{,}\) \(t\in [0,2\pi]\) for some \(r\in (R_1,R_2)\text{.}\)