It is easy to see using the limit definition that \(\frac{d}{dz}(w)=0\) and \(\frac{d}{dz}(z)=1\text{.}\) We illustrate the definition only for \(f(z)=z^2\) and \(f(z)=1/z\text{.}\)
Given \(f(z)=z^2\) and any \(z_0\in \C\text{,}\) we have
\begin{align*}
\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0} \amp = \lim\limits_{z\to z_0}\frac{z^2-z_0^2}{z-z_0} \\
\amp =\lim\limits_{z\to z_0}\frac{(z-z_0)(z+z_0)}{z-z_0}\\
\amp =\lim\limits_{z\to z_0}z+z_0\\
\amp = 2z_0\text{.}
\end{align*}
This shows that \(\frac{d}{dz}(z^2)=2z\) for all \(z\text{.}\)
Now let \(f(z)=1/z\text{.}\) We have
\begin{align*}
\lim\limits_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0} \amp = \lim\limits_{z\to z_0}\frac{1/z-1/z_0}{z-z_0}\\
\amp = \lim\limits_{z\to z_0}\frac{(z_0-z)/(zz_0)}{z-z_0}\\
\amp = \lim\limits_{z\to z_0}\frac{z_0-z}{zz_0(z-z_0)}\\
\amp = \lim\limits_{z\to z_0}-\frac{1}{zz_0}\\
\amp = -\frac{1}{z_0^2}\text{.}
\end{align*}
This shows that \(\frac{d}{dz}(1/z)=-1/z^2\) for all \(z\text{.}\)