First observe that statement (2) follows from (1) since for \(z\ne 0\) and positive integer \(n\) we have
\begin{align*}
z^{-n} \amp= (z^{-1})^n \\
\amp = (r^{-1}(\cos(-\theta)+i\sin(-\theta))^n \amp (\knowl{./knowl/xref/th_polar_mult.html}{\text{1.2.16}})\\
\amp = (r^{-1})^n(\cos(-n\theta)+i\sin(-n\theta))\\
\amp = r^{-n}(\cos(-n\theta)+i\sin(-n\theta)) \amp \text{(by (1))}\text{.}
\end{align*}
Base case: \(n=0\text{.}\) We have
\begin{align*}
r^0(\cos (0\theta)+i\sin(0\theta)) \amp = 1(\cos 0+i\sin 0) \\
\amp = 1\\
\amp = z^0 \amp (\knowl{./knowl/xref/d_integer_powers.html}{\text{1.1.17}})\text{,}
\end{align*}
as desired.
Induction step: we assume the statement is true for \(n\text{,}\) and show it is true for \(n+1\text{.}\) Thus we assume that
\begin{equation*}
z^n=r^n(\cos(n\theta)+i\sin(n\theta))\text{.}
\end{equation*}
It follows that
\begin{align*}
z^{n+1} \amp = z\, z^n\\
\amp = z\cdot r^n(\cos(n\theta)+i\sin(n\theta)) \amp (\text{ind. hyp.})\\
\amp = r(\cos \theta+i\sin\theta)\cdot r^n(\cos(n\theta)+i\sin(n\theta)) \\
\amp = r\, r^{n+1}(\cos(\theta+n\theta)+i\sin(\theta+n\theta)) \amp \text{(polar mult.)}\\
\amp =r^{n+1}(\cos((n+1)\theta)+i\sin((n+1)\theta))\text{,}
\end{align*}
as desired.