Let \(\ell\) be the line passing through the origin with direction vector \(\boldn\text{.}\) Given any \(\boldx=(x,y,z)\in \R^3\text{,}\) let \(P\) be the point with coordinates \((x,y,z)\text{.}\) The orthogonal projection \(R=\proj{P}{\ell}\) of \(P\) onto \(\ell\) satisfies
\begin{equation*}
\overrightarrow{RP}\cdot \boldn=0\text{.}
\end{equation*}
Let \(Q\) be the point of \(\R^3\) with position vector \(\overrightarrow{OQ}\) satisfying
\begin{align}
\overrightarrow{OQ}\amp = \overrightarrow{RP} \tag{3.2.6}\\
\amp=\overrightarrow{OP}-\overrightarrow{OR}\tag{3.2.7}\\
\amp=(x,y,z)-\proj{P}{\ell} \tag{3.2.8}
\end{align}
so that
\begin{equation}
\overrightarrow{OP}=\overrightarrow{OQ}+\overrightarrow{OR}\text{.}\tag{3.2.9}
\end{equation}
Since
\begin{align*}
\overrightarrow{OQ}\cdot \boldn\amp = \overrightarrow{RP}\cdot \boldn \amp \knowl{./knowl/eq_vec_formula.html}{\text{(3.2.8)}} \\
\amp = 0 \amp (\text{def. of } R=\proj{P}{\ell})\text{,}
\end{align*}
the point
\(Q\) lies in the plane
\(W\text{.}\) (See
Example 1.1.7.) Furthermore, we have
\begin{align*}
\overrightarrow{QP} \amp =\overrightarrow{OP}-\overrightarrow{OQ}\\
\amp = \overrightarrow{OR} \amp \knowl{./knowl/eq_vec_diff.html}{\text{(3.2.7)}}\text{.}
\end{align*}
Since
\(R\) is the orthogonal projection of
\(P\) onto
\(\ell\text{,}\) we have
\(R\in \ell\) by definition, which means
\(\overrightarrow{OR}\) is a scalar multiple of
\(\boldn\text{.}\) Since
\(\boldn\) is a normal vector to
\(W\text{,}\) we conclude that
\(\overrightarrow{QP}=\overrightarrow{OR}\) is orthogonal to
\(W\text{.}\) We have shown that
\(Q\) lies in
\(W\) and that
\(\overrightarrow{QP}\) is orthogonal to
\(W\text{.}\) We conclude that
\(Q\) is the orthogonal projection of
\(P\) onto
\(W\text{.}\) Thus, using
(3.2.8) we have
\begin{equation*}
\proj{\boldx}{W}=\boldx-\proj{\boldx}{\ell}\text{.}
\end{equation*}
Since \(\proj{\boldx}{\ell}=B\boldx\text{,}\) where
\begin{equation*}
B=\frac{1}{a^2+b^2+c^2}\begin{bmatrix}
a^2\amp ab\amp ac \\ ab\amp b^2\amp bc \\ ac\amp bc\amp c^2\end{bmatrix}
\end{equation*}
\begin{align*}
\proj{\boldx}{W} \amp = \boldx-B\boldx\\
\amp = I\boldx-B\boldx\\
\amp = (I-B)\boldx\\
\amp =
\frac{1}{a^2+b^2+c^2}\begin{amatrix}[rrr]
b^2+c^2\amp -ab \amp -ac \\
-ab \amp a^2+c^2 \amp -bc \\
-ac \amp -bc \amp a^2+b^2
\end{amatrix}\boldx\text{.}
\end{align*}
We conclude that \(\operatorname{proj}_W=T_A\) where
\begin{equation*}
A=\frac{1}{a^2+b^2+c^2}\begin{amatrix}[rrr]
b^2+c^2\amp -ab \amp -ac \\
-ab \amp a^2+c^2 \amp -bc \\
-ac \amp -bc \amp a^2+b^2
\end{amatrix}\text{,}
\end{equation*}
as desired.