Assume the claim is true of any \((n-1)\times (n-1)\) matrix. Given \(A=[a_{ij}]_{n\times n}\) we have
\begin{equation}
\det A=\sum_{j=1}^n (-1)^{1+j}a_{1 j}\det A_{1j}\text{.}\tag{2.18}
\end{equation}
Expanding along the \(i\)-th row of \(A\) for any \(2\leq i\leq n\text{,}\) on the other hand, we get
\begin{equation}
\sum_{k=1}^n (-1)^{i+k}a_{ik}\det A_{i k}\text{.}\tag{2.19}
\end{equation}
To show these two expressions are equal we use the induction hypothesis to compute each \(\det A_{1 j}\) by expanding along its \((i-1)\)-th row:
\begin{equation}
\det A_{1j}=\sum_{k=1}^{n-1}(-1)^{i-1+k}[ A_{1j}]_{(i-1) k}\det {( A_{1j})}_{(i-1) k}\text{.}\tag{2.20}
\end{equation}
The matrix \((A_{1j})_{(i-1) k}\) is the result of first deleting row 1 and column \(j\) from \(A\text{,}\) and then deleting row \((i-1)\) and column \(k\) of the resulting matrix. To deal with such iterated submatrices, we make some simple observations relating the rows and columns of \(A_{1 j}\) and \(A_{i k}\) with those of \(A\text{.}\)
-
The
\((i-1)\)-th row of
\(A_{1 j}\) corresponds to the
\(i\)-th row of
\(A\text{,}\) and the first row of
\(A_{i k}\) corresponds to the first row of
\(A\text{.}\)
-
If
\(k\lt j\text{,}\) then the
\(k\)-th column of
\(A_{1 j}\) corresponds to the
\(k\)-th column of
\(A\text{;}\) if
\(k\geq j\text{,}\) then the
\(k\)-th column of
\(A_{1 j}\) corresponds to the
\((k+1)\)-th column of
\(A\text{.}\)
-
If
\(j\lt k\text{,}\) then the
\(j\)-th column of
\(A_{ik}\) corresponds to the
\(j\)-th column of
\(A\text{;}\) if
\(j\geq k\text{,}\) then the
\(j\)-th column of
\(A_{ik}\) corresponds to the
\((j+1)\)-th column of
\(A\text{.}\)
From these observations we derive the following table of formulas:
\begin{align}
[ A_{1j}]_{(i-1) k} \amp =\begin{cases}
a_{i k} \amp \text{if } k\lt j\\
a_{i (k+1)} \amp \text{if } k\geq j
\end{cases} \tag{2.21}\\
[ A_{i k}]_{1 j} \amp =\begin{cases}
a_{1 j} \amp \text{if } j\lt k\\
a_{1 (j+1)} \amp \text{if } k\leq j
\end{cases} \tag{2.22}\\
{( A_{1j})}_{i-1 k}\amp=\begin{cases}
{( A_{i k})}_{1 (j-1)} \amp\text{if } k\lt j \\
{( A_{i (k+1)})}_{1 j} \amp \text{if } k\geq j
\end{cases}\text{.}\tag{2.23}
\end{align}
We now begin to unpack
(2.18):
\begin{align*}
\det A \amp= \sum_{j=1}^n (-1)^{1+j}a_{1 j}\det A_{1j}\\
\amp = \sum_{j=1}^n (-1)^{1+j}a_{1 j}\sum_{k=1}^{n-1}(-1)^{i-1+k}[ A_{1j}]_{(i-1)k}\det {( A_{1j})}_{(i-1)k} \amp \knowl{./knowl/xref/eq_det_submatrix.html}{\text{(2.20)}}\\
\amp
= \underset{k\lt j \text{ terms}}{\underbrace{\sum_{j=2}^n \sum_{k=1}^{j-1}(-1)^{i+j+k}a_{1 j}a_{i k}\det (A_{i k})_{1 (j-1)}}}+\underset{k\geq j \text{ terms}}{\underbrace{\sum_{j=1}^{n-1} \sum_{k=j}^{n-1}(-1)^{i+j+k}a_{1 j}a_{i (k+1)}\det (A_{i (k+1)})_{1 j}}}
\amp \knowl{./knowl/xref/eq_entry_formula_1.html}{\text{(2.21)}}, \knowl{./knowl/xref/eq_iterated_submatrix.html}{\text{(2.23)}}\\
\amp = \underset{j\geq k \text{ terms}}{\underbrace{\sum_{j=1}^{n-1} \sum_{k=1}^{j}(-1)^{i+j+k+1}a_{i k}[A_{ik}]_{1j}\det (A_{i k})_{1 j}}}+\underset{j\lt k \text{ terms}}{\underbrace{\sum_{j=1}^{n-1} \sum_{k=j+1}^{n}(-1)^{i+j+k-1}a_{ik}[A_{ik}]_{1 j}\det (A_{ik})_{1 j}}}
\amp (\text{re-labeled } j=j-1, k=k+1)\\
\amp = \underset{j\geq k \text{ terms}}{\underbrace{\sum_{j=1}^{n-1} \sum_{k=1}^{j}(-1)^{i+j+k+1}a_{i k}[A_{ik}]_{1j}\det (A_{i k})_{1 j}}}+\underset{j\lt k \text{ terms}}{\underbrace{\sum_{j=1}^{n-1} \sum_{k=j+1}^{n}(-1)^{i+j+k+1}a_{ik}[A_{ik}]_{1 j}\det (A_{ik})_{1 j}}}
\amp ((-1)^{c+2}=(-1)^c)\\
\amp =\sum_{k=1}^{n}(-1)^{i+k}a_{ik}\sum_{j=1}^{n-1}(-1)^{j+1}[A_{ik}]_{1j}\det (A_{ik})_{1j}
\amp (\text{re-order terms})\\
\amp =\sum_{k=1}^{n}(-1)^{i+k}a_{ik}\det A_{ik} \text{.}
\end{align*}
This completes the induction step, and thus the proof is finished.