Definition 3.3.1. Subspace.
Let \(V\) be a vector space. A subset \(W\subseteq V\) is a subspace of \(V\) if the following conditions hold:
-
\(W\) contains the zero vector.We have \(\boldzero\in W\text{.}\)
-
\(W\) is closed under addition.For all \(\boldv_1,\boldv_2\in V\text{,}\) if \(\boldv_1,\boldv_2\in W\text{,}\) then \(\boldv_1+\boldv_2\in W\text{.}\) Using logical notation:\begin{equation*} \boldv_1,\boldv_2\in W\implies \boldv_1+\boldv_2\in W\text{.} \end{equation*}
-
\(W\) is closed under scalar multiplication.For all \(c\in \R\) and \(\boldv\in V\text{,}\) if \(\boldv\in W\text{,}\) then \(c\boldv\in W\text{.}\) In logical notation:\begin{equation*} \boldv\in W\Rightarrow c\boldv\in W\text{.} \end{equation*}