Definition 5.3.1. Orthogonal complement.
. Let \((V,\langle \ , \rangle)\) be an inner product vector space, and let \(W\subseteq V\) be a subspace.
A vector \(\boldv\) is orthogonal to \(W\) if it is orthogonal to every element of \(W\text{:}\)i.e., if \(\langle \boldv, \boldw\rangle=0\) for all \(\boldw\in W\text{.}\)
The orthogonal complement of \(W\text{,}\) denoted \(W^\perp\text{,}\) is the set of all elements of \(V\) orthogonal to \(W\text{:}\) i.e.,
\begin{equation*}
W^\perp=\{\boldv\in V\colon \langle \boldv, \boldw\rangle=0 \text{ for all } \boldw\in W\}\text{.}
\end{equation*}