Skip to main content
Logo image

Appendix C Definitions

0.1 Sets

Definition 0.1.1 Sets
Definition 0.1.2 Set equality
Definition 0.1.3 Set inclusion (subsets)
Definition 0.1.5 Set-builder notation
Definition 0.1.8 Union, intersection, difference, and complement
Definition 0.1.9 Common mathematical sets

0.2 Functions

Definition 0.2.1 Functions
Definition 0.2.5 Function equality
Definition 0.2.6 Image of a set
Definition 0.2.7 Injective, surjective, bijective
Definition 0.2.9 Function composition
Definition 0.2.10 Identity and inverse functions

0.3 Tuples and Cartesian products

Definition 0.3.1 \(n\)-tuple
Definition 0.3.4 Cartesian product (finite)
Definition 0.3.5 I-tuple
Definition 0.3.6 Cartesian product (arbitrary)

0.4 Logic

Definition 0.4.1 Logical operators
Definition 0.4.5 Logical quantifiers

0.6 Complex numbers

Definition 0.6.1 Complex numbers
Definition 0.6.4 Complex addition and multiplication
Definition 0.6.9 Absolute value and complex conjugation

0.7 Polynomials

Definition 0.7.1 Polynomials
Definition 0.7.5 Degree of a polynomial

1.1 Systems of linear equations

Definition 1.1.1 Linear equations
Definition 1.1.3 Systems of linear equations
Definition 1.1.5 Solutions to linear systems
Definition 1.1.11 Elementary operations on linear systems
Definition 1.1.12 Row equivalent linear systems

1.2 Gaussian elimination

Definition 1.2.1 Augmented matrix
Definition 1.2.3 Row echelon form
Definition 1.2.5 Elementary row operations on matrices
Definition 1.2.8 Gaussian elimination
Definition 1.2.10 Gauss-Jordan elimination

1.3 Solving linear systems

Definition 1.3.1 Free and leading variables
Definition 1.3.5 Consistent and inconsistent systems

2.1 Matrix arithmetic

Definition 2.1.2 Matrix
Definition 2.1.3 Matrix notation
Definition 2.1.5 Matrix equality
Definition 2.1.7 Square matrices, row vectors, column vectors, zero matrices
Definition 2.1.9 Matrix addition and subtraction
Definition 2.1.11 Scalar multiplication of matrices
Definition 2.1.13 Linear combination of matrices
Definition 2.1.17 Matrix multiplication
Definition 2.1.21 Dot product
Definition 2.1.29 Matrix transposition

2.2 Matrix algebra

Definition 2.2.2 Additive inverse of a matrix
Definition 2.2.3 Identity matrix

2.3 Invertible matrices

Definition 2.3.1 Invertible matrix
Definition 2.3.10 Matrix powers
Definition 2.3.11 Matrix polynomials

2.4 The invertibility theorem

Definition 2.4.1 Elementary matrices
Definition 2.4.7 Diagonal and triangular matrices

2.5 The determinant

Definition 2.5.1 Submatrix notation
Definition 2.5.3 The determinant
Definition 2.5.7 Minors and expansions along rows/columns
Definition 2.5.15 Adjoint matrix

3.1 Real vector spaces

Definition 3.1.1 Vector space
Definition 3.1.14 Linear combination of vectors

3.2 Linear transformations

Definition 3.2.1 Linear transformations
Definition 3.2.3 Zero and identity transformation
Definition 3.2.8 Matrix transformations
Definition 3.2.12 Rotation in the plane
Definition 3.2.16 Reflection through a line
Definition 3.2.20 Projection onto a line
Definition 3.2.24 Orthogonal projection onto a plane

3.3 Subspaces

Definition 3.3.1 Subspace
Definition 3.3.15 Trace of a matrix
Definition 3.3.16 Trace-zero, symmetric, and skew-symmetric
Definition 3.3.20 Function subspaces

3.4 Null space and image

Definition 3.4.1 Null space and image
Definition 3.4.5 Null space of a matrix

3.5 Span and linear independence

Definition 3.5.1 Span
Definition 3.5.6 Spanning set
Definition 3.5.9 Linear independence (for finite subsets)
Definition 3.5.14 Linear independence (for arbitrary subsets)

3.6 Bases

Definition 3.6.1 Basis
Definition 3.6.19 Standard matrix of linear \(T\colon \R^n\rightarrow \R^m\)

3.7 Dimension

Definition 3.7.1 Cardinality of a set
Definition 3.7.4 Dimension of a vector space

3.8 Rank-nullity theorem and fundamental spaces

Definition 3.8.1 Rank and nullity
Definition 3.8.5 Fundamental spaces

3.9 Isomorphisms

Definition 3.9.1 Isomorphism

4.1 Coordinate vectors

Definition 4.1.1 Ordered bases
Definition 4.1.3 Coordinate vectors

4.2 Matrix representations of linear transformations

Definition 4.2.1 Matrix representations of linear transformations

4.3 Change of basis

Definition 4.3.1 Change of basis matrix
Definition 4.3.20 Similar matrices

4.4 Eigenvectors and eigenvalues

Definition 4.4.3 Eigenvectors and eigenvalues
Definition 4.4.15 Eigenspaces
Definition 4.4.18 Characteristic polynomial of a matrix

4.5 Diagonalization

Definition 4.5.1 Diagonalizable
Definition 4.5.3 Eigenbasis
Definition 4.5.27 Characteristic polynomial of a transformation
Definition 4.5.29 Algebraic/geometric multiplicity

5.1 Inner product spaces

Definition 5.1.1 Inner product
Definition 5.1.4 (Weighted) Euclidean space
Definition 5.1.14 Norm (or length) of a vector
Definition 5.1.20 Distance between vectors
Definition 5.1.25 Angle between vectors

5.2 Orthogonal bases

Definition 5.2.1 Orthogonality
Definition 5.2.5 Orthogonal and orthonormal bases
Definition 5.2.13 Orthogonal matrices

5.3 Orthogonal projection

Definition 5.3.1 Orthogonal complement

5.4 The spectral theorem

Definition 5.4.1 Self-adjoint operators
Definition 5.4.9 Orthogonally diagonalizable