Skip to main content
Logo image

Appendix A Notation

Symbol Description Location
\(x\in A\) set membership Definition 0.1.1
\(A\subseteq B\) set inclusion Definition 0.1.3
\(A\cup B\) set union Definition 0.1.8
\(A^c\) set complement Definition 0.1.8
\(A\cap B\) set intersection Definition 0.1.8
\(A-B\) set difference Definition 0.1.8
\(\{\ \}, \emptyset\) the empty set Definition 0.1.9
\(\mathbb{R}\) the real numbers Definition 0.1.9
\(\mathbb{Z}\) the integers Definition 0.1.9
\(\mathbb{Q}\) the rational numbers Definition 0.1.9
\(f\colon A\rightarrow B\) a function from \(A\) to \(B\) Definition 0.2.1
\(f(A)\) image of the set \(A\) under \(f\) Definition 0.2.6
\(\operatorname{im} f\) image of a function \(f\) Definition 0.2.6
\(f\circ g\) the composition of \(f\) and \(g\) Definition 0.2.9
\((a_1,a_2,\dots, a_n)\) \(I\)-tuple Definition 0.3.1
\(A_1\times A_2\times \cdots A_n\) Cartesian product Definition 0.3.4
\(\boldx=(x_i)_{i\in I}\) \(I\)-tuple Definition 0.3.5
\(\prod_{i\in I}A_i\) Cartesian product of the sets \(A_i\) Definition 0.3.6
\(\C\) the complex numbers Definition 0.6.1
\(\Re z\) real part of complex number \(z\) Definition 0.6.1
\(\Im z\) imaginary part of complex number \(z\) Definition 0.6.1
\(\C\) complex numbers Definition 0.6.1
\(\deg f\) degree of polynomial \(f\) Definition 0.7.5
\(\begin{amatrix}[c|c]A\amp \mathbb{b}\end{amatrix}\) augmented matrix Definition 1.2.1
\(A\xrightarrow{c\,r_i} B\) scalar multiplication Remark 1.2.6
\(A\xrightarrow{r_i\leftrightarrow r_j} B\) row swap Remark 1.2.6
\(A\xrightarrow{r_i+c\,r_j} B\) replace \(r_i\) with \(r_i+c\,r_j\) Remark 1.2.6
\([a_{ij}]_{m\times n}\) Matrix whose \(ij\)-th entry is \(a_{ij}\) Definition 2.1.3
\((A)_{ij}\) \(ij\)-th entry of the matrix \(A\) Definition 2.1.3
\(\boldzero_{m\times n}\) the \(m\times n\) zero matrix Definition 2.1.7
\(\boldx\cdot\boldy\) dot product Definition 2.1.21
\(-A\) Additive inverse of \(A\) Definition 2.2.2
\(I\) inverse matrix Definition 2.2.3
\(A^{-1}\) inverse of \(A\) Definition 2.3.1
\(A^r\) matrix power Definition 2.3.10
\(f(A)\) matrix polynomial Definition 2.3.11
\(\underset{cr_i}{E}\) Scaling elementary matrix Definition 2.4.1
\(\underset{r_i\leftrightarrow r_j}{E}\) Row swap elementary matrix Definition 2.4.1
\(\underset{r_i+c\,r_j}{E}\) Row addition elementary matrix Definition 2.4.1
\(A_{ij}\) submatrix of \(A\) Definition 2.5.1
\(\det A\) determinant of \(A\) Definition 2.5.3
\(M_{ij}\) the \(ij\)-th minor of a matrix Definition 2.5.7
\(\adj A\) adjoint of a square matrix Definition 2.5.15
\(M_{mn}\) vector space of \(m\times n\) matrices Example 3.1.3
\(\R^n\) vector space of \(n\)-tuples Example 3.1.4
\(\{\boldzero\}\) the zero vector space Example 3.1.9
\(\R^\infty\) the vector space of infinite real sequences Example 3.1.10
\(F(I,\R)\) vector space of functions from \(I\) to \(\R\) Example 3.1.11
\(\R_{>0}\) vector space of positive real numbers Example 3.1.13
\(T_A\) the matrix transformation associated to \(A\) Definition 3.2.8
\(\rho_\alpha\) rotation by \(\alpha\) in the plane Definition 3.2.12
\(\tr A\) the trace of \(A\) Definition 3.3.15
\(\NS A\) the null space of \(A\) Definition 3.4.5
\(\Span S\) the span of \(S\) Definition 3.5.1
\(\val{X}\) the cardinality of the set \(X\) Definition 3.7.1
\(\dim V\) dimension of \(V\) Definition 3.7.4
\(\rank T\) the rank of \(T\) Definition 3.8.1
\(\nullity T\) the nullity of \(T\) Definition 3.8.1
\(\NS A\) the null space of matrix \(A\) Definition 3.8.5
\(\RS A\) the row space of a matrix \(A\) Definition 3.8.5
\(\CS A\) the column space of a matrix \(A\) Definition 3.8.5
\(\rank A\) the rank of a matrix \(A\) Definition 3.8.5
\(\nullity A\) the nullity of a matrix \(A\) Definition 3.8.5
\(\underset{B\rightarrow B'}{P}\) change of basis matrix Definition 4.3.1
\(\norm{\boldv}\) norm of \(\boldv\) Definition 5.1.14
\(d(\boldv, \boldw)\) the distance between \(\boldv\) and \(\boldw\) Definition 5.1.20
\(W^\perp\) the orthogonal complement of \(W\) Definition 5.3.1