The rotation matrix corresponding to \(\alpha=\pi\) is
\begin{equation*}
A=\begin{amatrix}[rr]\cos\pi\amp -\sin\pi\\ \sin\pi \amp \cos\pi \end{amatrix}= \begin{amatrix}[rr]-1\amp 0\\ 0 \amp -1 \end{amatrix}\text{.}
\end{equation*}
Thus \(\rho_\pi=T_A\) has formula
\begin{equation*}
\rho_{\pi}(x,y)=(-x,-y)=-(x,y)\text{.}
\end{equation*}
Note: this is as expected! Rotating by 180 degrees produces the vector inverse.
The rotation matrix corresponding to \(\alpha=2\pi/3\) is
\begin{equation*}
B=\begin{amatrix}[rr]\cos(2\pi/3)\amp -\sin(2\pi/3)\\ \sin(2\pi/3) \amp \cos(2\pi/3) \end{amatrix}= \begin{amatrix}[rr]-\frac{1}{2}\amp -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} \amp -\frac{1}{2} \end{amatrix}\text{.}
\end{equation*}
Thus \(\rho_{2\pi/3}=T_B\) has formula
\begin{equation*}
\rho_{2\pi/3}(x,y)=\frac{1}{2}(-x-\sqrt{3}y, \sqrt{3}x-y)\text{.}
\end{equation*}
Letβs check our formula for \(\rho_{2\pi/3}\)for the vectors \((1,0)\) and \((0,1)\text{:}\)
\begin{align*}
\rho_{2\pi/3}(1,0) \amp =(-1/2, \sqrt{3}/2) \\
\rho_{2\pi/3}(0,1) \amp =(-\sqrt{3}/2, -1/2) \text{.}
\end{align*}
Confirm for yourself geometrically that these are the vectors you get by rotating the vectors \((1,0)\) and \((0,1)\) by an angle of \(2\pi/3\) about the origin.