Definition 4.5.1. Fundamental spaces.
Let \(A\) be a an \(m\times n\) matrix. Let \(\boldr_1,\dots, \boldr_m\in \R^n\) be the \(m\) rows of \(A\text{,}\) and let \(\boldc_1,\dots \boldc_n\in \R^m\) be its \(n\) columns. The following subspaces are called the fundamental subspaces of \(A\).
-
Null space.The null space of \(A\), denoted \(\NS A\) is defined as\begin{equation*} \NS A =\{\boldx\in\R^n\colon A\boldx=\boldzero\}\subseteq \R^n.\text{.} \end{equation*}
-
Row space.The row space of \(A\), denoted \(\RS A\text{,}\) is defined as\begin{equation*} \RS A=\Span \{\boldr_1, \boldr_2, \dots, \boldr_m\}\subseteq \R^n\text{.} \end{equation*}
-
Column space.The column space of \(A\), denoted \(\CS A\text{,}\) is defined as\begin{equation*} \CS A=\Span \{\boldc_1, \boldc_2, \dots, \boldc_n\}\subseteq \R^m\text{.} \end{equation*}