The two equations
\begin{align*}
x_1+x_2\amp =0 \amp x_4-x_5\amp =0
\end{align*}
give two independent conditions on \(x_1,x_2\) and \(x_4,x_5\text{,}\) and no condition on \(x_3\text{.}\) We see that the general element of \(W\) can be described as
\begin{equation}
(r,-r,s,t,t)=r\underset{\boldx_1}{\underbrace{(1,-1,0,0,0)}}+s\underset{\boldx_2}{\underbrace{(0,0,1,0,0)}}+t\underset{\boldx_3}{\underbrace{(0,0,0,1,1)}}\tag{4.11}
\end{equation}
for arbitrary scalars
\(r,s,t\text{.}\) It follows immediately that
\(B=\{\boldx_1,\boldx_2,\boldx_3\}\) spans
\(W\text{.}\) Furthermore, using
(4.11), we have
\begin{align*}
c_1\boldx_1+c_2\boldx_2+c_3\boldx_3=\boldzero \amp\implies (c_1,-c_1,c_2,c_3,c_3)=(0,0,0,0,0,0) \\
\amp \implies c_1=c_2=c_3=0
\end{align*}
for any scalars \(c_1,c_2,c_3\in \R\text{.}\) Thus \(B\) is linearly independent. We conclude \(B\) is a basis.