Skip to main content

Euclidean vector spaces

Appendix E Examples

0.1 Sets

Example 0.1.7

0.2 Functions

Example 0.2.2
Example 0.2.3 Arithmetic operations as functions
Example 0.2.8 Role of domain and codomain in injectivity and surjectivity

0.4 Logic

Example 0.4.3
Example 0.4.7 Modeling “Every positive number has a square-root”
Example 0.4.10 The limit does not exist

0.5 Proof techniques

Example 0.5.3 Proof: invertible is equivalent to bijective
Example 0.5.4 Proof by contradiction
Example 0.5.8 Weak induction
Example 0.5.10 Strong induction

0.6 Complex numbers

Example 0.6.5
Example 0.6.7
Example 0.6.11

1.1 Vector space structure of \(\R^n\)

Example 1.1.11 Vector space of infinite sequences
Example 1.1.12 Vector space of positive reals
Example 1.1.14 Linear combination
Example 1.1.15 Linear combination

1.2 Inner product structure of \(\R^n\)

Example 1.2.2 Dot product on \(\R^4\)
Example 1.2.5 Weighted dot product
Example 1.2.7 Why the weights must be positive

2.1 Systems of linear equations

Example 2.1.2 Linear and nonlinear equations
Example 2.1.5 Visualizing lines in \(\R^2\)
Example 2.1.7 Visualizing planes in \(\R^3\)
Example 2.1.11 Solutions to elementary systems
Example 2.1.12 Solutions to elementary systems (again)
Example 2.1.17 Complete example

2.2 Gaussian elimination

Example 2.2.7 Row echelon versus reduced row echelon form
Example 2.2.12 Row echelon form
Example 2.2.14 Reduced row echelon form
Example 2.2.16 Row echelon form is not unique

2.3 Solving linear systems

Example 2.3.2 Free and leading variables
Example 2.3.3 Solving linear systems
Example 2.3.7 Video: solving linear systems
Example 2.3.9 Video: solving linear systems
Example 2.3.14 Vector parametrization

3.1 Matrix arithmetic

Example 3.1.7 Matrix equality
Example 3.1.18 Matrix linear combinations
Example 3.1.19 Expressing matrix as a linear combination
Example 3.1.24 Matrix multiplication
Example 3.1.26 Matrix multiplication via dot product
Example 3.1.30 Column and row methods
Example 3.1.31 Video example of matrix multiplication
Example 3.1.35 Transpose

3.2 Matrix algebra

Example 3.2.2 Video example: proving matrix equalities
Example 3.2.13 Video example: proving matrix equalities

3.3 Invertible matrices

Example 3.3.5 Invertible matrices
Example 3.3.13 Matrix polynomials

3.4 The invertibility theorem

Example 3.4.4 Inverses of elementary matrices
Example 3.4.8 Triangular \(3\times 3\) matrices
Example 3.4.12 Inverse algorithms
Example 3.4.13 Video example: inverse algorithm

3.5 The determinant

Example 3.5.11
Example 3.5.18
Example 3.5.24 Determinant via row reduction

4.1 Subspaces

Example 4.1.2
Example 4.1.3
Example 4.1.5 Video example: deciding if \(W\subseteq V\) is a subspace
Example 4.1.13 Subspace as null space
Example 4.1.20 Trace-zero symmetric, and skew-symmetric \(2\times 2\) matrices

4.2 Span and linear independence

Example 4.2.3 Examples in \(\R^2\)
Example 4.2.4 Video example: computing span
Example 4.2.9 Spanning sets are not unique
Example 4.2.13 Elementary examples
Example 4.2.16 Linear independence

4.3 Bases

Example 4.3.3 Some nonstandard bases
Example 4.3.6 One-step technique for \(\R^3\)
Example 4.3.7 Video example: deciding if a set is a basis (\(\R^n\))
Example 4.3.9 Video example: deciding if a set is a basis (\(M_{nn}\))
Example 4.3.12 By-inspection basis technique
Example 4.3.13 By-inspection basis technique

4.4 Dimension

Example 4.4.5 Dimensions of familiar spaces
Example 4.4.6 Dimension of subspace
Example 4.4.7 Dimension of symmetric matrices
Example 4.4.8 Video example: computing dimension
Example 4.4.13 Infinite dimensional space
Example 4.4.18 Dimension of subspace
Example 4.4.19 Subspaces of \(\R^3\)

4.5 Fundamental spaces

Example 4.5.3 Fundamental spaces: elementary example
Example 4.5.9 Column space and row reduction
Example 4.5.11 Fundamental spaces
Example 4.5.14 Rank-nullity
Example 4.5.15 Using the rank-nullity theorem
Example 4.5.16 Video example: fundamental spaces
Example 4.5.19 Video example: contracting to a basis

5.1 Linear transformations

Example 5.1.5 Nonlinear function
Example 5.1.13 Linear transformation: one-step technique
Example 5.1.17 Left-shift transformation on \(\R^\infty\)
Example 5.1.18 Video examples: deciding if \(T\) is linear
Example 5.1.24 Bases and transformations
Example 5.1.30 Standard matrix computation
Example 5.1.36 Rotation matrices
Example 5.1.39 Visualizing reflection and rotation
Example 5.1.42 Composition of reflections

5.2 Null space, image, and isomophisms

Example 5.2.4
Example 5.2.7 Matrix transformation
Example 5.2.10 Rank-nullity application
Example 5.2.11 Rank-nullity application
Example 5.2.19 Transposition is an isomorphism

5.3 Coordinate vectors

Example 5.3.5 Standard bases
Example 5.3.6 Reorderings of standard bases
Example 5.3.7 Nonstandard bases
Example 5.3.8 Video example: coordinate vectors
Example 5.3.13

5.4 Matrix representations of linear transformations

Example 5.4.2 Matrix representation
Example 5.4.5 Different choice of bases
Example 5.4.10 Computing with matrix representations
Example 5.4.11 Video example: matrix representations

5.5 Change of basis

Example 5.5.3 Change of basis
Example 5.5.4 Change of basis
Example 5.5.6 \(V=\R^n\text{,}\) \(B\) standard basis
Example 5.5.7 Change of basis, \(B\) standard
Example 5.5.9 Change of basis, \(B\) standard
Example 5.5.10 Video example: change of basis matrix
Example 5.5.15 Matrix representations and change of basis
Example 5.5.17 Reflection in \(\R^2\)
Example 5.5.18 Video example: change of basis for transformations
Example 5.5.20 Video example: change of basis and reflection

6.1 Eigenvectors and eigenvalues

Example 6.1.1
Example 6.1.8 Zero and identity transformations
Example 6.1.9 Scaling transformations
Example 6.1.10 Reflection
Example 6.1.11 Rotation
Example 6.1.12 Transposition
Example 6.1.17 Rotation (again)
Example 6.1.20 Compute eigenspaces
Example 6.1.21 Compute eigenspaces
Example 6.1.23 Compute eigenspaces
Example 6.1.26 Transposition (again)

6.2 Diagonalization

Example 6.2.4
Example 6.2.5
Example 6.2.6
Example 6.2.9
Example 6.2.14
Example 6.2.15 Transposition
Example 6.2.18
Example 6.2.23 Diagonalizable: matrix powers
Example 6.2.24 Diagonalizable: matrix polynomials
Example 6.2.25
Example 6.2.31
Example 6.2.32

7.1 Inner product spaces

Example 7.1.2 Norm with respect to dot product
Example 7.1.3 Norm with respect to weighted dot product
Example 7.1.5 Unit vectors
Example 7.1.7
Example 7.1.13
Example 7.1.14
Example 7.1.15 Weighted dot product distance

7.2 Orthogonal bases

Example 7.2.3
Example 7.2.4
Example 7.2.9
Example 7.2.12 Orthogonal bases
Example 7.2.15
Example 7.2.19 Orthonormal change of basis: \(\R^n\)
Example 7.2.20 Orthonormal change of basis: polynomials

7.3 Orthogonal projection

Example 7.3.3
Example 7.3.4
Example 7.3.6
Example 7.3.8
Example 7.3.13 Orthogonal projection onto line
Example 7.3.17 Visualizing orthogonal projection
Example 7.3.19
Example 7.3.20 Video example: orthogonal projection in function space
Example 7.3.24 Projection onto a line \(\ell\subseteq \R^3\)
Example 7.3.25
Example 7.3.26 Projection onto planes in \(\R^3\)
Example 7.3.27
Example 7.3.28 Best fitting line
Example 7.3.32

7.4 The spectral theorem

Example 7.4.6 Symmetric \(2\times 2\) matrices
Example 7.4.7 Symmetric \(4\times 4\) matrix
Example 7.4.13 Orthogonal diagonalization
Example 7.4.15 Orthogonal projections are self-adjoint