Appendix C Definitions
0.1 Sets
Definition 0.1.1 Sets
Definition 0.1.2 Set equality
Definition 0.1.3 Set inclusion (subsets)
Definition 0.1.5 Set-builder notation
Definition 0.1.8 Union, intersection, difference, and complement
Definition 0.1.9 Common mathematical sets
0.2 Functions
Definition 0.2.1 Functions
Definition 0.2.5 Function equality
Definition 0.2.6 Image of a set
Definition 0.2.7 Injective, surjective, bijective
Definition 0.2.9 Function composition
Definition 0.2.10 Identity and inverse functions
0.3 Tuples and Cartesian products
Definition 0.3.1 \(n\)-tuple
Definition 0.3.4 Cartesian product (finite)
Definition 0.3.5 I-tuple
Definition 0.3.6 Cartesian product (arbitrary)
0.4 Logic
Definition 0.4.1 Logical operators
Definition 0.4.5 Logical quantifiers
0.6 Complex numbers
Definition 0.6.1 Complex numbers
Definition 0.6.4 Complex addition and multiplication
Definition 0.6.9 Absolute value and complex conjugation
0.7 Polynomials
Definition 0.7.1 Polynomials
Definition 0.7.5 Degree of a polynomial
1.1 Vector space structure of \(\R^n\)
Definition 1.1.1 Real \(n\)-space
Definition 1.1.2 Vector operations of \(\R^n\)
Definition 1.1.4 Vector space
Definition 1.1.8 Vector space terminology for \(\R^n\)
Definition 1.1.10 Zero space
Definition 1.1.13 Linear combination
Definition 1.1.16 Vector difference
1.2 Inner product structure of \(\R^n\)
Definition 1.2.1 Dot product
Definition 1.2.3 Inner product
Definition 1.2.4 Weighted dot product
2.1 Systems of linear equations
Definition 2.1.1 Linear equations
Definition 2.1.3 Solutions to linear equations
Definition 2.1.4 Hyperplane
Definition 2.1.9 Systems of linear equations
Definition 2.1.14 Elementary operations on linear systems
Definition 2.1.15 Row equivalent linear systems
2.2 Gaussian elimination
Definition 2.2.1 Augmented matrix
Definition 2.2.5 Row echelon form
Definition 2.2.8 Elementary row operations on matrices
2.3 Solving linear systems
Definition 2.3.1 Free and leading variables
Definition 2.3.5 Consistent and inconsistent systems
3.1 Matrix arithmetic
Definition 3.1.2 Matrix
Definition 3.1.3 Matrix notation
Definition 3.1.5 Rows and columns of a matrix
Definition 3.1.6 Matrix equality
Definition 3.1.8 Matrices of particular shape
Definition 3.1.11 Matrix addition and scalar multiplication
Definition 3.1.13 Zero matrices
Definition 3.1.14 Additive inverse matrix
Definition 3.1.21 Matrix multiplication
Definition 3.1.33 Matrix transposition
3.2 Matrix algebra
Definition 3.2.4 Identity matrix
3.3 Invertible matrices
Definition 3.3.1 Invertible matrix
Definition 3.3.10 Matrix powers
Definition 3.3.11 Matrix polynomials
3.4 The invertibility theorem
Definition 3.4.1 Elementary matrices
Definition 3.4.7 Diagonal and triangular matrices
3.5 The determinant
Definition 3.5.1 Submatrix notation
Definition 3.5.3 The determinant
Definition 3.5.7 Minors and expansions along rows/columns
Definition 3.5.15 Adjoint matrix
4.1 Subspaces
Definition 4.1.1 Subspace
Definition 4.1.10 Null space of matrix
Definition 4.1.18 Trace of a matrix
Definition 4.1.19 Trace-zero, symmetric, and skew-symmetric
4.2 Span and linear independence
Definition 4.2.1 Span
Definition 4.2.7 Spanning set
Definition 4.2.10 Linear independence
4.3 Bases
Definition 4.3.1 Basis
4.4 Dimension
Definition 4.4.1 Cardinality of a set
Definition 4.4.2 Dimension of a vector space
4.5 Fundamental spaces
Definition 4.5.1 Fundamental spaces
Definition 4.5.12 Rank and nullity of matrix
5.1 Linear transformations
Definition 5.1.1 Linear transformations
Definition 5.1.8 Zero, identity, and scaling transformations
Definition 5.1.15 Matrix conjugation
Definition 5.1.25 Matrix transformations
Definition 5.1.28 Standard matrix of linear \(T\colon \R^n\rightarrow \R^m\)
Definition 5.1.33 Rotation in the plane
Definition 5.1.37 Reflection through a line
5.2 Null space, image, and isomophisms
Definition 5.2.1 Null space and image
Definition 5.2.8 Rank and nullity
Definition 5.2.15 Isomorphism
5.3 Coordinate vectors
Definition 5.3.1 Ordered bases
Definition 5.3.3 Coordinate vectors
5.4 Matrix representations of linear transformations
Definition 5.4.1 Matrix representations of linear transformations
5.5 Change of basis
Definition 5.5.1 Change of basis matrix
Definition 5.5.22 Similar matrices
6.1 Eigenvectors and eigenvalues
Definition 6.1.3 Eigenvectors and eigenvalues
Definition 6.1.15 Eigenspaces
Definition 6.1.18 Characteristic polynomial of a matrix
6.2 Diagonalization
Definition 6.2.1 Diagonalizable
Definition 6.2.3 Eigenbasis
Definition 6.2.26 Characteristic polynomial of a transformation
Definition 6.2.28 Algebraic/geometric multiplicity
7.1 Inner product spaces
Definition 7.1.1 Norm (or length) of a vector
Definition 7.1.6 Distance between vectors
Definition 7.1.11 Angle between vectors
7.2 Orthogonal bases
Definition 7.2.1 Orthogonality
Definition 7.2.5 Orthogonal and orthonormal bases
Definition 7.2.13 Orthogonal matrices
7.3 Orthogonal projection
Definition 7.3.1 Orthogonal complement
Definition 7.3.11 Projection onto a line
Definition 7.3.15 Orthogonal projection onto a plane
7.4 The spectral theorem
Definition 7.4.1 Self-adjoint operators
Definition 7.4.9 Orthogonally diagonalizable