To use linear approximation, we need to compute the linearization of a function \(f\) centered at some input \(a\text{.}\) We take \(f(x)\sqrt[3]{x}\text{,}\) and \(a=8\text{.}\) Why \(a=8\text{?}\) I can compute \(f(8)\) and \(f'(8)\) easily by hand, and \(8.05\) is reasonably close to \(8\text{.}\) We first compute
\begin{align*}
f'(x) \amp =(x^{1/3})'\\
\amp =\frac{1}{3}x^{-2/3}\text{.}
\end{align*}
The linearization of \(f\) centered at \(a=8\) is then
\begin{align*}
L(x) \amp = f'(8)(x-8)+f(8)\\
\amp =\frac{1}{12}(x-8)+2 \amp (8^{1/3}=2, 8^{-2/3}=1/(\sqrt[3]{8})^2=1/4)
\end{align*}
Lastly, we estimate
\begin{align*}
f(8.05) \amp \approx L(8.05)\\
\amp = \frac{1}{12}\cdot 0.05+2\\
\amp \frac{1}{240}+2 \amp (0.05=1/20)\\
\amp = \frac{481}{240}\text{.}
\end{align*}
Using technology we see that
\begin{align*}
f(8.05) \amp = 2.0041580\dots \\
\frac{481}{240} \amp = 2.0041666\dots\text{.}
\end{align*}
Our estimate ended up being pretty close!