Skip to main content

Section 14 Derivative: trig functions

Proof.

We prove the derivative formula for \(\sin\text{;}\) the argument for \(\cos\) is very similar. Using the limit definition of the derivative, we have
\begin{align*} \frac{d}{dx}(\sin x) \amp = \lim\limits_{h\to 0}\frac{\sin(x+h)-\sin x}{h}\\ \amp \lim\limits_{h\to 0}\frac{\sin x\cos h+\cos x\sin h-\sin x}{h}\\ \amp = \lim\limits_{h\to 0}\frac{\sin x(\cos h-1)}{h}+\frac{\cos x\sin h}{h}\\ \amp = \sin x\lim\limits_{h\to 0}\frac{\cos h-1}{h}+\cos x \lim\limits_{h\to 0}\frac{\sin h}{h} \\ \amp = \sin x\cdot 0 +\cos x\cdot 1\\ \amp = \cos x\text{,} \end{align*}
where the penultimate step makes use of our previously discussed limits
\begin{align*} \lim\limits_{t\to 0}\frac{\sin t}{t} \amp =1 \amp \lim\limits_{t\to 0}\frac{\cos t-1}{t}=0 \text{.} \end{align*}

Example 14.2. Tangent lines: sinusoidal.

Let \(f(x)=\cos x-\sin x\text{.}\)
  1. Find an equation for the tangent line to the graph of \(f\) at \(x=\pi/3\text{.}\)
  2. Find all points on the graph of \(f\) where the tangent line is horizontal.
Solution.
  1. The tangent line to the graph of \(f\) at \(x=\pi/3\text{,}\) passes through the point
    \begin{equation*} P=(\pi/3, f(\pi/3))=(\pi/3, \cos(\pi/3)-\sin(\pi/3))=(\pi/3, 1/2-\sqrt{3}/2). \end{equation*}
    The slope of the tangent line here is given by \(f'(\pi/3)\text{.}\) We first compute
    \begin{align*} f'(x) \amp = (\cos x)'-(\sin x)' \amp \text{(lin. comb.)}\\ \amp = -\sin x-\cos x\text{.} \end{align*}
    Thus the slope of the tangent line is
    \begin{equation*} f'(\pi/3)=-\sin(\pi/3)-\cos(\pi/3)=-(\frac{\sqrt{3}+1}{2})\text{,} \end{equation*}
    We conclude that an equation for the tangent line here is
    \begin{equation*} y-\frac{1-\sqrt{3}}{2}=-\frac{1+\sqrt{3}}{2}(x-\frac{\pi}{3})\text{.} \end{equation*}
  2. The tangent line to a point \(P=(x,f(x))\) on the graph of \(f\) is horizontal when its slope \(f'(x)=0\text{.}\) Thus we need to find all \(x\) such that
    \begin{equation*} f'(x)=-\sin x-\cos x=0\text{,} \end{equation*}
    or equivalently,
    \begin{equation*} \tan x=-1\text{.} \end{equation*}
    The solutions to this trig equation are
    \begin{equation*} x=\frac{3\pi}{4}+\pi n, \end{equation*}
    where \(n\) is an integer. The corresponding points on the graph are
    \begin{equation*} P=\left(\frac{3\pi}{4}+\pi n, f\left(\frac{3\pi}{4}+\pi n\right)\right) = \begin{cases} \left(\frac{3\pi}{4}+\pi n, -\sqrt{2}\right) \amp \text{if } n \text{ is even}\\ \left(\frac{3\pi}{4}+\pi n, \sqrt{2}\right) \amp \text{if } n \text{ is odd}\\ \end{cases}\text{.} \end{equation*}

Definition 14.3. Trigonometric functions.

We define the tangent (\(\tan\)), cotangent (\(\cot\)), secant (\(\sec\)), and cosecant (\(\csc\)) functions as follows:
\begin{align*} \tan x \amp = \frac{\sin x}{\cos x} \amp \cot x\amp =\frac{\cos x}{\sin x} \\ \sec x \amp =\frac{1}{\cos x} \amp \csc x\amp =\frac{1}{\sin x} \text{.} \end{align*}